JeHoon Lee
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by JeHoon Lee.
Molecular Endocrinology | 2009
Sakhila K. Banu; JeHoon Lee; V.O. Speights; Anna Starzinski-Powitz; Joe A. Arosh
Endometriosis is a benign chronic gynecological disease of reproductive-age women characterized by the presence of functional endometrial tissues outside the uterine cavity. It is an estrogen-dependent disease. Current treatment modalities to inhibit biosynthesis and actions of estrogen compromise menstruation, pregnancy, and the reproductive health of women and fail to prevent reoccurrence of disease. There is a critical need to identify new specific signaling modules for non-estrogen-targeted therapies for endometriosis. In our previous study, we reported that selective inhibition of cyclooxygenase-2 prevented survival, migration, and invasion of human endometriotic epithelial and stromal cells, which was due to decreased prostaglandin E(2) (PGE(2)) production. In this study, we determined mechanisms through which PGE(2) promoted survival of human endometriotic cells. Results of the present study indicate that 1) PGE(2) promotes survival of human endometriotic cells through EP2 and EP4 receptors by activating ERK1/2, AKT, nuclear factor-kappaB, and beta-catenin signaling pathways; 2) selective inhibition of EP2 and EP4 suppresses these cell survival pathways and augments interactions between proapoptotic proteins (Bax and Bad) and antiapoptotic proteins (Bcl-2/Bcl-XL), facilitates the release of cytochrome c, and thus activates caspase-3/poly (ADP-ribose) polymerase-mediated intrinsic apoptotic pathways; and 3) these PGE(2) signaling components are more abundantly expressed in ectopic endometriosis tissues compared with eutopic endometrial tissues during the menstrual cycle in women. These novel findings may provide an important molecular framework for further evaluation of selective inhibition of EP2 and EP4 as potential therapy, including nonestrogen target, to expand the spectrum of currently available treatment options for endometriosis in women.
Molecular and Cellular Endocrinology | 2011
JeHoon Lee; Sakhila K. Banu; Thenmozhi Subbarao; Anna Starzinski-Powitz; Joe A. Arosh
Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. We recently reported that inhibition of COX-2 decreased migration as well as invasion of human endometriotic epithelial and stromal cells. Results of the present study indicates that selective inhibition of PGE2 receptors EP2 and EP4 suppresses expression and/or activity of MMP1, MMP2, MMP3, MMP7 and MMP9 proteins and increases expression of TIMP1, TIMP2, TIMP3, and TIMP4 proteins and thereby decreases migration and invasion of human immortalized endometriotic epithelial and stromal cells into matrigel. The interactions between EP2/EP4 and MMPs are mediated through Src and β-arrestin 1 protein complex involving MT1-MMP and EMMPRIN in human endometriotic cells. These novel findings provide an important molecular and cellular framework for further evaluation of selective inhibition of EP2 and EP4 as potential nonsteroidal therapy for endometriosis in childbearing-age women.
Toxicology and Applied Pharmacology | 2011
Sakhila K. Banu; Jone A. Stanley; JeHoon Lee; Sam D. Stephen; Joe A. Arosh; Patricia B. Hoyer; Robert C. Burghardt
Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24h, with or without vitamin C pre-treatment for 24h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.
Endocrinology | 2010
JeHoon Lee; John A. McCracken; Sakhila K. Banu; Royce Rodriguez; Thamizh K. Nithy; Joe A. Arosh
In ruminants, prostaglandin F2alpha (PGF(2alpha)) is the uterine luteolytic hormone. During luteolysis, PGF(2alpha) is synthesized and released from the endometrium in a pulsatile pattern. The unique structure of the vascular utero-ovarian plexus (UOP) allows transport of luteolytic PGF(2alpha) pulses directly from the uterus to the ovary, thus bypassing the systemic circulation. However, the underlying molecular mechanism is not known. The objective of the present study was to determine a role for PG transporter protein (PGT) in the compartmental transport of PGF(2alpha) from uterus to ovary through the UOP at the time of luteolysis using the sheep as a ruminant model. [(3)H]PGF(2alpha), with or without a PGT inhibitor, was infused into UOP, and PGF(2alpha) transport and PGT protein expression were determined. Results indicate that PGT protein is expressed in tunica intima, tunica media, and tunica adventitia of the utero-ovarian vein and the ovarian artery of the UOP, and the expression levels are higher on d 10-15 compared with d 3-6 of the estrous cycle. Pharmacological inhibition of PGT prevented transport of exogenous [(3)H]PGF(2alpha) as well as oxytocin-induced endogenous luteolytic PGF(2alpha) pulse up to 80% from uterine venous blood into ovarian arterial blood through the UOP at the time of luteolysis in sheep. Taken together, these results indicate that at the time of luteolysis, transport of PGF(2alpha) from uterus to ovary through the UOP is regulated by PGT-mediated mechanisms. These findings also suggest that impaired PGT-mediated transport of PGF(2alpha) from the utero-ovarian vein into the ovarian artery could adversely influence luteolysis and thus affect fertility in ruminants.
Biology of Reproduction | 2012
JeHoon Lee; John A. McCracken; Jone A. Stanley; Thamizh K. Nithy; Sakhila K. Banu; Joe A. Arosh
ABSTRACT In ruminants, endometrial prostalgandin (PG) F2alpha causes functional luteolysis, whereas luteal synthesis of PGF2alpha is required for structural luteolysis. PGE2 is considered to be a luteoprotective mediator. Molecular aspects of luteal PGF2alpha and PGE2 biosynthesis and signaling during the estrous cycle and establishment of pregnancy are largely unknown. The objectives of the present study were 1) to determine the regulation of proteins involved in PGF2alpha and PGE2 biosynthesis, catabolism, transport and signaling in the corpus luteum (CL); 2) to investigate the transport of interferon tau (IFNT), PGF2alpha, and PGE2 from the uterus to the ovary through the vascular utero-ovarian plexus (UOP); and 3) to compare the intraluteal production of PGF2alpha and PGE2 on Days 12, 14, and 16 of the estrous cycle and pregnancy in sheep. Our results indicate that luteal PG biosynthesis is selectively directed towards PGF2alpha at the time of luteolysis and towards PGE2 during the establishment of pregnancy. Moreover, the ability of the CL of early pregnancy to resist luteolysis is due to increased intraluteal biosynthesis of PGE2 and PGE2 receptor (PTGER) 2 (also known as EP2)- and PTGER4 (also known as EP4)-mediated signaling. We also found that IFNT protein is not transported through the UOP from the uterus to the ovary; in contrast, a large proportion of endometrial PGE2 is transported from the uterus to the ovary through the UOP. These results indicate that endometrial PGE2 stimulated by pregnancy is transported locally to the ovary, which increases luteal PGE2 biosynthesis and hence activates luteal PTGER2 and PTGER4 signaling, thus protecting the CL during the establishment of pregnancy in sheep.
Molecular Endocrinology | 2010
Sakhila K. Banu; JeHoon Lee; Sam D. Stephen; Thamizh K. Nithy; Joe A. Arosh
In ruminants, pulsatile release of prostaglandin F2α (PGF(2α)) from the endometrium is transported to the ovary and induces luteolysis thereby allowing new estrous cycle. Interferon tau (IFNT), a type 1 IFN secreted by the trophoblast cells of the developing conceptus, acts on endometrial luminal epithelial (LE) cells and inhibits pulsatile release of PGF(2α) and establishes pregnancy. One of the unknown mechanisms is that endometrial pulsatile release of PGF(2α) is inhibited whereas basal release of PGF(2α) is increased in pregnant compared with nonpregnant sheep. We have recently found that pulsatile release of PGF(2α) from the endometrium is regulated by prostaglandin transporter (PGT)-mediated mechanisms. We hypothesize that modulation in the endometrial pulsatile vs. basal release of PGF(2α) likely requires PGT-mediated selective transport, and IFNT interacts with PGT protein and modulates pulsatile vs. basal release of PGF(2α). The new findings of the present study are: 1) IFNT activates novel JAK-SRC kinase-EGFR-RAS-RAF-ERK1/2-early growth response (EGR)-1 signaling module in LE cells; 2) IFNT increases interactions between PGT and ERK1/2 or EGR-1 proteins and alters phosphorylation of PGT protein; 3) IFNT precludes action of protein kinase C and Ca(2+) on PGT function; and 4) IFNT inhibits 80% PGT-mediated but not 20% simple diffusion-mediated release of PGF(2α) from the endometrial LE cells through this novel signaling module. The results of the present study provide important new insights on IFNT signaling and molecular control of PGT-mediated release of PGF(2α) and unravel the underlying mechanisms responsible for the increased basal release of PGF(2α) at the time of establishment of pregnancy in ruminants.
Molecular and Cellular Endocrinology | 2012
JeHoon Lee; Sakhila K. Banu; Thamizh K. Nithy; Jone A. Stanley; Joe A. Arosh
Prostaglandin E2 (PGE(2)) plays pleiotropic roles at fetal-maternal interface during establishment of pregnancy. The objectives of the study were to: (i) determine regulation of PGE2 receptors EP1, EP2, EP3, and EP4 in the endometrium during the estrous cycle and early pregnancy; and (ii) understand endometrial epithelial and stromal cell-specific hormonal regulation of EP2 and EP4 in sheep. Results indicate that: (i) early pregnancy induces expression of EP2 and EP4 but not EP1 and EP3 proteins in the endometrium on days 12-16 compared to that of estrous cycle; (ii) intrauterine infusion of interferon tau (IFNT) increases expression of EP2 and EP4 proteins in endometrium; and (iii) IFNT activates distinct epithelial and stromal cell-specific JAK, EGFR, ERK1/2, AKT, or JNK signaling module to regulate expression of EP2 and EP4 proteins in the ovine endometrium. Our results indicate a role for EP2 and EP4-mediated PGE(2) signaling in endometrial functions and establishment of pregnancy in ruminants.
Fertility and Sterility | 2010
JeHoon Lee; Sakhila K. Banu; Royce Rodriguez; Anna Starzinski-Powitz; Joe A. Arosh
OBJECTIVE To determine interactions between prostaglandin (PG) E(2) signaling and proliferation of endometriotic cells to increase our knowledge about PGE(2) signaling in the pathogenesis of endometriosis in humans. DESIGN Immortalized human endometriotic epithelial and stromal cells were used as an in vitro model. Effects of inhibition of PGE(2) receptors on proliferation of endometriotic cells and associated cell cycle regulation were determined. SETTING College Veterinary Medicine and Biomedical Sciences, Texas A&M University. PATIENT(S) Not available. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Cell proliferation, cell viability, cell cycle, regulation of cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors. RESULT(S) Selective blockade of EP2/EP4 inhibited proliferation of human endometriotic cells by inducing cell cycle arrest at the G(1)-S and G(2)-M checkpoints in epithelial cells and at the G(2)-M checkpoint in stromal cells. This cell cycle arrest during specific checkpoints was associated with distinct regulation of respective cyclins and cyclin-dependent kinases. Inhibition of EP1 did not decrease endometriotic cell proliferation. CONCLUSION(S) For the first time data from the present study provide a direct molecular link between PGE(2) signaling and proliferation of endometriotic cells and suggest that inhibition of EP2/EP4 could be a potential nonestrogen (E) treatment option for endometriosis in women.
Endocrinology | 2013
Dan I. Lebovic; Shahryar K. Kavoussi; JeHoon Lee; Sakhila K. Banu; Joe A. Arosh
Endometriosis is a chronic inflammatory disease of reproductive age women leading to chronic pelvic pain and infertility. Current antiestrogen therapies are temporizing measures, and endometriosis often recurs. Potential nonestrogenic or nonsteroidal targets are needed for treating endometriosis. Peroxisome proliferator-activated receptor (PPAR)γ, a nuclear receptor, is activated by thiazolidinediones (TZDs). In experimental endometriosis, TZDs inhibit growth of endometriosis. Clinical data suggest potential use of TZDs for treating pain and fertility concurrently in endometriosis patients. Study objectives were to 1) determine the effects of PPARγ action on growth and survival of human endometriotic epithelial and stromal cells and 2) identify the underlying molecular links between PPARγ activation and cell cycle regulation, apoptosis, estrogen biosynthesis, and prostaglandin E2 biosynthesis and signaling in human endometriotic epithelial and stromal cells. Results indicate that activation of PPARγ by TZD ciglitazone 1) inhibits growth of endometriotic epithelial cells 12Z up to 35% and growth of endometriotic stromal cells 22B up to 70% through altered cell cycle regulation and intrinsic apoptosis, 2) decreases expression of PGE2 receptors (EP)2 and EP4 mRNAs in 12Z and 22B cells, and 3) inhibits expression and function of P450 aromatase mRNA and protein and estrone production in 12Z and 22B cells through EP2 and EP4 in a stromal-epithelial cell-specific manner. Collectively, these results indicate that PGE2 receptors EP2 and EP4 mediate actions of PPARγ by incorporating multiple cell signaling pathways. Activation of PPARγ combined with inhibition of EP2 and EP4 may emerge as novel nonsteroidal therapeutic targets for endometriosis-associated pain and infertility, if clinically proven safe and efficacious.
Biology of Reproduction | 2013
JeHoon Lee; Sakhila K. Banu; Robert C. Burghardt; Anna Starzinski-Powitz; Joe A. Arosh
ABSTRACT Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.