Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Burghardt is active.

Publication


Featured researches published by Robert C. Burghardt.


Oncogene | 2013

HOTAIR IS A NEGATIVE PROGNOSTIC FACTOR AND EXHIBITS PRO-ONCOGENIC ACTIVITY IN PANCREATIC CANCER

Kyounghyun Kim; Indira Jutooru; Gayathri Chadalapaka; Greg A. Johnson; James H. Frank; Robert C. Burghardt; Sang Bae Kim; Stephen Safe

HOTAIR is a long intervening non-coding RNA (lincRNA) that associates with the Polycomb Repressive Complex 2 (PRC2) and overexpression is correlated with poor survival for breast, colon and liver cancer patients. In this study, we show that HOTAIR expression is increased in pancreatic tumors compared with non-tumor tissue and is associated with more aggressive tumors. Knockdown of HOTAIR (siHOTAIR) by RNA interference shows that HOTAIR has an important role in pancreatic cancer cell invasion, as reported in other cancer cell lines. In contrast, HOTAIR knockdown in Panc1 and L3.6pL pancreatic cancer cells that overexpress this lincRNA decreased cell proliferation, altered cell cycle progression and induced apoptosis, demonstrating an expanded function of HOTAIR in pancreatic cancer cells compared with other cancer cell lines. Results of gene array studies showed that there was minimal overlap between HOTAIR-regulated genes in pancreatic cells and breast cancer cells, and HOTAIR uniquely suppressed several interferon-related genes and gene sets related to cell cycle progression in pancreatic cancer cells and tumors. Analysis of selected genes suppressed by HOTAIR in Panc1 and L3.6pL cells showed by knockdown of EZH2 and chromatin immunoprecipitation assays that HOTAIR-mediated gene repression was both PRC2-dependent and -independent. HOTAIR knockdown in L3.6pL cells inhibited tumor growth in mouse xenograft model, further demonstrating the pro-oncogenic function of HOTAIR in pancreatic cancer.


Biology of Reproduction | 2000

Evidence for Placental Abnormality as the Major Cause of Mortality in First-Trimester Somatic Cell Cloned Bovine Fetuses

Jonathan R. Hill; Robert C. Burghardt; Karen Jones; Charles R. Long; C.R. Looney; Taeyoung Shin; Thomas E. Spencer; James A. Thompson; Quinton A. Winger; Mark E. Westhusin

Abstract The production of cloned animals is, at present, an inefficient process. This study focused on the fetal losses that occur between Days 30–90 of gestation. Fetal and placental characteristics were studied from Days 30–90 of gestation using transrectal ultrasonography, maternal pregnancy specific protein b (PSPb) levels, and postslaughter collection of fetal tissue. Pregnancy rates at Day 30 were similar for recipient cows carrying nuclear transfer (NT) and control embryos (45% [54/120] vs. 58% [11/19]), although multiple NT embryos were often transferred into recipients. From Days 30–90, 82% of NT fetuses died, whereas all control pregnancies remained viable. Crown-rump (CR) length was less in those fetuses that were destined to die before Day 90, but no significant difference was found between the CR lengths of NT and control fetuses that survived to Day 90. Maternal PSPb levels at Days 30 and 50 of gestation were not predictive of fetal survival to Day 90. The placentas of six cloned and four control (in vivo or in vitro fertilized) bovine pregnancies were compared between Days 35 and 60 of gestation. Two cloned placentas showed rudimentary development, as indicated by flat, cuboidal trophoblastic epithelium and reduced vascularization, whereas two others possessed a reduced number of barely discernable cotyledonary areas. The remaining two cloned placentas were similar to the controls, although one contained hemorrhagic cotyledons. Poor viability of cloned fetuses during Days 35–60 was associated with either rudimentary or marginal chorioallantoic development. Our findings suggest that future research should focus on factors that promote placental and vascular growth and on fetomaternal interactions that promote placental attachment and villous formation.


Molecular and Cellular Biology | 2003

The Aryl Hydrocarbon Receptor Mediates Degradation of Estrogen Receptor α through Activation of Proteasomes

Mark Wormke; Matthew Stoner; Bradley Saville; Kelcey Walker; Maen Abdelrahim; Robert C. Burghardt; Stephen Safe

ABSTRACT 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands suppress 17β-estradiol (E)-induced responses in the rodent uterus and mammary tumors and in human breast cancer cells. Treatment of ZR-75, T47D, and MCF-7 human breast cancer cells with TCDD induces proteasome-dependent degradation of endogenous estrogen receptor α (ERα). The proteasome inhibitors MG132, PSI, and PSII inhibit the proteasome-dependent effects induced by TCDD, whereas the protease inhibitors EST, calpain inhibitor II, and chloroquine do not affect this response. ERα levels in the mouse uterus and breast cancer cells were significantly lower after cotreatment with E plus TCDD than after treatment with E or TCDD alone, and our results indicate that AhR-mediated inhibition of E-induced transactivation is mainly due to limiting levels of ERα in cells cotreated with E plus TCDD. TCDD alone or in combination with E increases formation of ubiquitinated forms of ERα, and both coimmunoprecipitation and mammalian two-hybrid assays demonstrate that TCDD induces interaction of the AhR with ERα in the presence or absence of E. In contrast, E does not induce AhR-ERα interactions. Thus, inhibitory AhR-ERα cross talk is linked to a novel pathway for degradation of ERα in which TCDD initially induces formation of a nuclear AhR complex which coordinately recruits ERα and the proteasome complex, resulting in degradation of both receptors.


Biology of Reproduction | 2004

Progesterone and Placental Hormone Actions on the Uterus: Insights from Domestic Animals

Thomas E. Spencer; Greg A. Johnson; Robert C. Burghardt; Fuller W. Bazer

Abstract Progesterone is unequivocally required for maternal support of conceptus (embryo/fetus and associated extraembryonic membranes) survival and development. In cyclic sheep, progesterone is paradoxically involved in suppressing and then initiating development of the endometrial luteolytic mechanism. In cyclic and pregnant sheep, progesterone negatively autoregulates progesterone receptor (PR) gene expression in the endometrial luminal (LE) and superficial glandular epithelium (GE). In cyclic sheep, PR loss is closely followed by increases in epithelial estrogen receptor (ERα) and then oxytocin receptor (OTR), allowing oxytocin to induce uterine release of luteolytic prostaglandin F2α pulses. In pregnant sheep, the conceptus produces interferon tau (IFNτ) that acts on the endometrium to inhibit transcription of the ERα gene and thus development of the endometrial luteolytic mechanism. After Day 13 of pregnancy, the endometrial epithelia do not express the PR, whereas the stroma and myometrium remain PR positive. The absence of PR in the endometrial GE is required for onset of differentiated function of the glands during pregnancy. The sequential, overlapping actions of progesterone, IFNτ, placental lactogen (PL), and growth hormone (GH) comprise a hormonal servomechanism that regulates endometrial gland morphogenesis and terminal differentiated function during gestation. In pigs, estrogen, the pregnancy-recognition signal, increases fibroblast growth factor 7 (FGF-7) expression in the endometrial LE that, in turn, stimulates proliferation and differentiated functions of the trophectoderm, which expresses the receptor for FGF-7. Strategic manipulation of these physiological mechanisms may offer therapeutic schemes to improve uterine capacity, conceptus survival, and reproductive health of domestic animals and humans.


Biology of Reproduction | 2003

Osteopontin: Roles in Implantation and Placentation

Greg A. Johnson; Robert C. Burghardt; Fuller W. Bazer; Thomas E. Spencer

Abstract Osteopontin (OPN) is an acidic member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of extracellular matrix proteins/cytokines that undergoes extensive posttranslational modification, including phosphorylation, glycosylation, and cleavage, yielding molecular mass variants ranging in size from 25 to 75 kDa. The result is a versatile protein(s) with multiple functions arising from its role as a mediator of cell-cell and cell-extracellular matrix (ECM) communication that encompass both normal and tumorigenic developmental processes, immunological responses during inflammation and wound healing, and biomineralization. Studies in primates, pigs, sheep, and rodents have revealed that OPN is a major constituent of the uterine-placental microenvironment with influence as 1) a component of histotroph required for adhesion and signal transduction at the uterine-placental interface throughout pregnancy, 2) a gene product expressed by uterine stroma contributing to a decidualization-like transformation that correlates with the degree of conceptus invasiveness, and 3) a product of resident uterine and placental immune cells that may regulate their behavior and cytokine production. This minireview summarizes information regarding uterine and placental expression of OPN that has accumulated over the past 15 yr, and we briefly describe structural/functional properties of this protein that are likely relevant to its role(s) during pregnancy. Comparative studies have offered insights into the potential hormonal/cytokine, cellular, and molecular mechanisms underlying OPN-mediated adhesion, remodeling, and cell-cell/cell-ECM communication within the uterus and placenta. OPN has the potential to profoundly impact pregnancy, and investigators are now challenged to focus on the mechanistic nature of the functions of this multifaceted and major component of the uterine-placental microenvironment.


Reproduction | 2009

COMPARATIVE ASPECTS OF IMPLANTATION

Fuller W. Bazer; Thomas E. Spencer; Greg A. Johnson; Robert C. Burghardt; Guoyao Wu

Uterine receptivity to implantation of blastocysts in mammals includes hatching from zona pellucida, precontact with uterine luminal (LE) and superficial glandular (sGE) epithelia and orientation of blastocyst, apposition between trophectoderm and uterine LE and sGE, adhesion of trophectoderm to uterine LE/sGE, and, in some species, limited or extensive invasion into the endometrial stroma and induction of decidualization of stromal cells. These peri-implantation events are prerequisites for pregnancy recognition signaling, implantation, and placentation required for fetal-placental growth and development through the remainder of pregnancy. Although there is a range of strategies for implantation in mammals, a common feature is the requirement for progesterone (P(4)) to downregulate expression of its receptors in uterine epithelia and P(4) prior to implantation events. P(4) then mediates its effects via growth factors expressed by stromal cells in most species; however, uterine luminal epithelium may express a growth factor in response to P(4) and/or estrogens in species with a true epitheliochorial placenta. There is also compelling evidence that uterine receptivity to implantation involves temporal and cell-specific expression of interferon (IFN)-stimulated genes that may be induced directly by an IFN or induced by P(4) and stimulated by an IFN. These genes have many roles including nutrient transport, cellular remodeling, angiogenesis and relaxation of vascular tissues, cell proliferation and migration, establishment of an antiviral state, and protection of conceptus tissues from challenges by the maternal immune cells.


Reproduction, Fertility and Development | 2007

Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.

Thomas E. Spencer; Greg A. Johnson; Fuller W. Bazer; Robert C. Burghardt; Massimo Palmarini

The present review highlights new information on pregnancy recognition and conceptus development and implantation in sheep with respect to regulation by progesterone, interferons and endogenous retroviruses. After formation of the corpus luteum, progesterone acts on the endometrium and stimulates blastocyst growth and elongation to a filamentous conceptus (embryo/fetus and associated extra-embryonic membranes). The envelope of endogenous retroviruses related to Jaagsiekte sheep retroviruses appears to intrinsically regulate mononuclear trophectoderm cell proliferation and differentiation into trophoblast giant binucleate cells. The mononuclear trophectoderm cells of elongating sheep conceptuses secrete interferon-tau, which acts on the endometrium to prevent development of the luteolytic mechanism by inhibiting transcription of the gene for the oestrogen receptor alpha in the luminal and superficial ductal glandular epithelia. These actions prevent oestrogen-induced transcription of the oxytocin receptor gene and, therefore, oxytocin-induced luteolytic pulses of prostaglandin F2alpha. Progesterone down regulation of its receptors in luminal and glandular epithelia correlates temporally with a reduction in anti-adhesive mucin land induction of secreted galectin 15 (LGALSI5) and secreted phosphoprotein 1, which are proposed to regulate trophectoderm proliferation and adhesion. Interferon-c acts on the endometrial lumenal epithelium to induce WNT7A and to stimulate LGALS 15, cathepsin L and cystatin C, which are candidate regulators of conceptus development and implantation. The number of potential contributors to maternal recognition and establishment of pregnancy continues to grow and this highlights our limited appreciation of the complexity of the key molecules and signal transduction pathways that intersect during these key developmental processes. The goal of improving reproductive efficiency by preventing embryonic losses that occur during the peri-implantation period of pregnancy in domestic ruminants provides the challenge to increase our knowledge of endometrial function and conceptus development.


Molecular Human Reproduction | 2010

Novel pathways for implantation and establishment and maintenance of pregnancy in mammals

Fuller W. Bazer; Guoyao Wu; Thomas E. Spencer; Greg A. Johnson; Robert C. Burghardt; Kayla J. Bayless

Uterine receptivity to implantation varies among species, and involves changes in expression of genes that are coordinate with attachment of trophectoderm to uterine lumenal and superficial glandular epithelia, modification of phenotype of uterine stromal cells, silencing of receptors for progesterone and estrogen, suppression of genes for immune recognition, alterations in membrane permeability to enhance conceptus-maternal exchange of factors, angiogenesis and vasculogenesis, increased vascularity of the endometrium, activation of genes for transport of nutrients into the uterine lumen, and enhanced signaling for pregnancy recognition. Differential expression of genes by uterine epithelial and stromal cells in response to progesterone, glucocorticoids, prostaglandins and interferons may influence uterine receptivity to implantation in mammals. Uterine receptivity to implantation is progesterone-dependent; however, implantation is preceded by loss of expression of receptors for progesterone (PGR) so that progesterone most likely acts via PGR-positive stromal cells throughout pregnancy. Endogenous retroviruses expressed by the uterus and/or blastocyst also affect implantation and placentation in various species. Understanding the roles of the variety of hormones, growth factors and endogenous retroviral proteins in uterine receptivity for implantation is essential to enhancing reproductive health and fertility in humans and domestic animals.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Endogenous retroviruses regulate periimplantation placental growth and differentiation

Kathrin A. Dunlap; Massimo Palmarini; Mariana Varela; Robert C. Burghardt; Kanako Hayashi; Jennifer L. Farmer; Thomas E. Spencer

Endogenous retroviruses (ERVs) are fixed and abundant in the genomes of vertebrates. Circumstantial evidence suggests that ERVs play a role in mammalian reproduction, particularly placental morphogenesis, because intact ERV envelope genes were found to be expressed in the syncytiotrophoblasts of human and mouse placenta and to elicit fusion of cells in vitro. We report here in vivo and in vitro experiments finding that the envelope of a particular class of ERVs of sheep, endogenous Jaagsiekte sheep retroviruses (enJSRVs), regulates trophectoderm growth and differentiation in the periimplantation conceptus (embryo/fetus and associated extraembryonic membranes). The enJSRV envelope gene is expressed in the trophectoderm of the elongating ovine conceptus after day 12 of pregnancy. Loss-of-function experiments were conducted in utero by injecting morpholino antisense oligonucleotides on day 8 of pregnancy that blocked enJSRV envelope protein production in the conceptus trophectoderm. This approach retarded trophectoderm outgrowth during conceptus elongation and inhibited trophoblast giant binucleate cell differentiation as observed on day 16. Pregnancy loss was observed by day 20 in sheep receiving morpholino antisense oligonucleotides. In vitro inhibition of the enJSRV envelope reduced the proliferation of mononuclear trophectoderm cells isolated from day 15 conceptuses. Consequently, these results demonstrate that the enJSRV envelope regulates trophectoderm growth and differentiation in the periimplantation ovine conceptus. This work supports the hypothesis that ERVs play fundamental roles in placental morphogenesis and mammalian reproduction.


Cancer Research | 2004

Role of Sp Proteins in Regulation of Vascular Endothelial Growth Factor Expression and Proliferation of Pancreatic Cancer Cells

Maen Abdelrahim; Roger Smith; Robert C. Burghardt; Stephen Safe

Sp proteins play an important role in angiogenesis and growth of cancer cells, and specificity protein 1 (Sp1) has been linked to vascular endothelial growth factor (VEGF) expression in pancreatic cancer cells. RNA interference was used to investigate the role of Sp family proteins on regulation of VEGF expression and proliferation of Panc-1 pancreatic cancer cells. Using a series of constructs containing VEGF promoter inserts, it was initially shown that Sp1 and Sp3 were required for transactivation, and this was primarily dependent on proximal GC-rich motifs. We also showed that Sp4 was expressed in Panc-1 cells, and RNA interference assays suggested that Sp4 cooperatively interacted with Sp1 and Sp3 to activate VEGF promoter constructs in these cells. However, the relative contributions of Sp proteins to VEGF expression were variable among different pancreatic cancer cell lines. Small inhibitory RNAs for Sp3, but not Sp1 or Sp4, inhibited phosphorylation of retinoblastoma protein, blocked G0/G1 → S-phase progression, and up-regulated p27 protein/promoter activity of Panc-1 cells; similar results were observed in other pancreatic cancer cells, suggesting that Sp3-dependent growth of pancreatic cancer cells is caused by inhibition of p27 expression.

Collaboration


Dive into the Robert C. Burghardt's collaboration.

Researchain Logo
Decentralizing Knowledge