Jelena Arambašić
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jelena Arambašić.
Food and Chemical Toxicology | 2013
Vladimir Mihailović; Mirjana Mihailović; Aleksandra Uskoković; Jelena Arambašić; Danijela Mišić; Vesna Stanković; Jelena Katanić; Milan Mladenović; Slavica Solujić; Sanja Matić
This study is an attempt to evaluate the hepatoprotective activity of Gentiana asclepiadea L. against carbon tetrachloride-induced liver injury in rats. Methanol extracts of aerial parts (GAA) and roots (GAR) of G. asclepiadea at doses of 100, 200, and 400mg/ kg b.w. were orally administered to Wistar rats once daily for 7 days before they were treated with CCl(4). The hepatoprotective activity of the extracts in this study was compared with the reference drug silymarin. In CCl(4) treated animals, GAA and GAR significantly decreased levels of serum transaminases, alkaline phosphatase and total bilirubin, and increased the level of total protein. Treatment with the extracts resulted in a significant increase in the levels of catalase, superoxide dismutase and reduced glutathione, accompanied with a marked reduction in the levels of malondialdehyde, as compared to CCl(4) treated group. The histopathological studies confirmed protective effects of extracts against CCl(4)-induced liver injuries. No genotoxicity was observed in liver cells after GAA treatment, while GAR showed only slight genotoxic effects by comet assay. Phytochemical analysis revealed the presence of sweroside, swertiamarin and gentiopicrin in high concentrations in both extracts. It could be concluded that the use of G. asclepiadea extracts in the treatment of chemical-induced hepatotoxicity.
British Journal of Nutrition | 2013
Svetlana Dinić; Jelena Arambašić; Mirjana Mihailović; Aleksandra Uskoković; Nevena Grdović; Jelena Marković; Borivoje Karadžić; Goran Poznanović; Melita Vidaković
The present study aimed to investigate the effects of the treatment with a-lipoic acid (LA), a naturally occurring compound possessing antioxidant activity, on liver oxidant stress in a rat model of streptozotocin (STZ)-induced diabetes by examining potential mechanistic points that influence changes in the expression of antioxidant enzymes such as catalase (CAT) and CuZn/Mn superoxide dismutase(s) (SOD). LA was administered for 4 weeks by daily intraperitoneal injections (10 mg/kg) to STZ-induced diabetic rats, starting from the last STZ treatment. LA administration practically normalised the activities of the indicators of hepatocellular injury, alanine and aspartate aminotransferases, and lowered oxidative stress, as observed by the thiobarbituric acid-reactive substance assay, restored the reduced glutathione:glutathione disulphide ratio and increased the protein sulfhydryl group content. The lower level of DNA damage detected by the comet assay revealed that LA reduced cytotoxic signalling, exerting a hepatoprotective effect. The LA-treated diabetic rats displayed restored specific enzymatic activities of CAT, CuZnSOD and MnSOD. Quantitative real-time PCR analysis showed that LA restored CAT gene expression to its physiological level and increased CuZnSOD gene expression, but the gene expression of MnSOD remained at the diabetic level. Although the amounts of CAT and CuZnSOD protein expression returned to the control levels, the protein expression of MnSOD was elevated. These results suggested that LA administration affected CAT and CuZnSOD expression mainly at the transcriptional level, and MnSOD expression at the post-transcriptional level. The observed LA-promoted decrease in the O-GlcNAcylation of extracellular signal-regulated kinase, protein 38 kinase, NF-kB, CCAAT/enhancer-binding protein and the antioxidative enzymes themselves in diabetic rats suggests that the regulatory mechanisms that supported the changes in antioxidative enzyme expression were also influenced by post-translational mechanisms.
Iubmb Life | 2007
Aleksandra Uskoković; Svetlana Dinić; Mirjana Mihailović; Ilijana Grigorov; Svetlana Ivanovic-Matic; Desanka Bogojević; Nevena Grdović; Jelena Arambašić; Melita Vidaković; Vesna Martinović; Miodrag Petrović; Goran Poznanović
The synthesis of alpha‐2‐macroglobulin (α2M) is low in adult rat liver and elevated in fetal liver. During the acute‐phase (AP) response it becomes significantly increased in both adult and fetal liver. In this work, the cross talk of STAT3 and NF‐κB transcription factors during α2M gene expression was analysed. Using immunoblotting, their cellular compartmentalization was examined by comparing the cytoplasmic levels of STAT3 and NF‐κB with their active equivalents, the 86 and 91 kDa isoforms and p65‐subunit, respectively, in the nuclear extract and nuclear matrix. Different partitioning dynamics of the transcription factors were observed. At the level of protein‐DNA interactions, studied by α2M promoter affinity chromatography, it was established that different ratios of promoter‐binding STAT3 isoforms participated in elevated hepatic transcription in the basal state fetus and the AP‐adult, but only the 91 kDa isoform in the AP‐fetus. Unchanged levels of DNA‐bound p65 in the control and AP‐fetus suggest that it participated in constitutive transcription. The promoter‐binding of p65 observed in the AP‐adult suggests that it was involved in transcriptional stimulation of α2M expression. The selective enrichment of the AP‐adult nuclear matrix with promoter‐binding STAT3 disclosed the importance of this association in the induction of transcription. Protein‐protein interactions were examined by co‐immunoprecipitation. Interactions between the 86 kDa STAT3 isoform and p65 that were observed in the control and AP‐fetus and of both the 86 and 91 kDa STAT3 isoforms with p65 in the AP‐adult, suggest that protein‐protein interactions were functionally connected to increased transcription. We concluded that α2M gene expression is driven by developmental‐ and AP‐related mechanisms that rely on STAT3/NF‐κB interplay. IUBMB Life, 59: 170‐178, 2007
Iubmb Life | 2010
Jelena Arambašić; Goran Poznanović; Svetlana Ivanovic-Matic; Desanka Bogojević; Mirjana Mihailović; Aleksandra Uskoković; Ilijana Grigorov
Upregulation of haptoglobin (Hp) expression in the rat during the acute phase (AP) response is the result of synergistic effects of IL‐6–, IL‐1β–, and corticosterone‐activated signaling pathways. IL‐6 signaling terminates in cis–trans interactions of the Hp gene hormone‐responsive element (HRE) with transcription factors STAT3 and C/EBPβ. The aim of this study was to examine the unresolved molecular mechanism of glucocorticoid action. A 3‐fold rise in serum corticosterone at 2 and 4 h of the AP response induced by turpentine administration preceded a 2.3‐fold increase in the rate of Hp gene transcription at 12 h that was accompanied by a 4.8‐fold increase in glucocorticoid receptor (GR), the appearance of an 86‐kDa STAT3 isoform and 3.9‐, 1.9‐, and 1.7‐fold increased amounts of 91‐kDa STAT3, 35‐ and 42‐kDa C/EBPβ isoforms in the nucleus. These events resulted in 4.6‐ and 2.5‐fold increased Hp levels in the liver and serum at 24 h. HRE affinity chromatography and immunoblot analysis revealed that maximal occupancy of the HRE with GR, STAT3, and C/EBPβ at 12 h correlated with increased transcriptional activity of the Hp gene. Coimmunoprecipitation experiments showed that activated GR established de novo interaction with STAT3 isoforms while GR–C/EBPβ interactions observed during basal transcription increased during the AP response. Computer analysis of the HRE disclosed two potential GR‐binding sites: one overlapping STAT3, another adjacent to a C/EBPβ‐binding site. This finding and the experimental results suggest that activated GR through direct interactions with STAT3 and C/EBPβ, participates in Hp gene upregulation as a transcriptional coactivator.
Cryobiology | 2010
Nevena Grdović; Melita Vidaković; Mirjana Mihailović; Svetlana Dinić; Aleksandra Uskoković; Jelena Arambašić; Goran Poznanović
Although cryosurgery is attaining increasing clinical acceptance, our understanding of the mechanisms of cryogenic cell destruction remains incomplete. While it is generally accepted that cryoinjured cells die by necrosis, the involvement of apoptosis was recently shown. Our studies of liver cell death by cryogenic temperature revealed the activation of endonuclease p23 and its de novo association with the nuclear matrix. This finding is strongly suggestive of a programmed-type of cell death process. The presumed order underlying cryonecrotic cell death is addressed here by examining the mechanism of p23 activation. To that end, nuclear proteins that were prepared from fresh liver, which is devoid of p23 activity, were incubated with protein fractions isolated from liver exposed to freezing/thawing that possessed a presumed p23 activation factor. We observed that the activation of p23 was the result of a proteolytic event in which cathepsin D played a major role. Different patterns of proteolytic cleavage of nuclear proteins after in vitro incubation of nuclei and in samples isolated from frozen/thawed liver were observed. Although both processes induced p23 activation, the incubation experiments generated proteolytic hallmarks of apoptosis, while freezing/thawing of whole liver resulted in typical necrotic PARP-1 cleavage products and intact lamin B. As an explanation we offer a hypothesis that after freezing, cells possess the potential to die through necrotic as well as apoptotic mechanisms, based on our finding that the cytosol of cells exposed to cryogenic temperatures contains both necrotic and apoptotic executors of cell death.
European Journal of Pharmaceutical Sciences | 2014
Nevena Stanković; Milan Mladenović; Mirjana Mihailović; Jelena Arambašić; Aleksandra Uskoković; Vesna Stanković; Vladimir Mihailović; Jelena Katanić; Sanja Matić; Slavica Solujić; Nenad Vuković; Slobodan Sukdolak
Eight synthesized 3-(1-aminoethylidene)chroman-2,4-diones and 4-hydroxy-3-(1-iminoethyl)-2H-chromen-2-ones were evaluated as in vivo anticoagulants by intraperitoneal application to adult male Wistar rats in order to examine their pharmacological potential, evaluate ther toxicity and propose the mechanism of action. Two of them, 2f and 2a, in concentration of 2mg/kg of body weight, presented remarkable activity (PT=130s; PT=90s) upon seven days of continuous application. The results of rat serum and liver biochemical screening, as well those of histopathological studies, proved the compounds to be non-toxic. Activity of the compounds was further examined on the molecular level. Here, molecular docking studies were performed to position the compounds in relation to the active site of VKORC1 and determine the bioactive conformations. Docking results suggested a non-covalent mode of action during which the proton transfer occurs from Cys135 SH towards 4-carbonyl group of anticoagulant. All crucial interactions for anticoagulant activity were confirmed in generated structure-based 3-D pharmacophore model, consisted of hydrogen bond acceptor and hydrophobic aromatic features, and quantified by a best correlation coefficient of 0.97.
British Journal of Nutrition | 2012
Nevena Grdović; Svetlana Dinić; Jelena Arambašić; Mirjana Mihailović; Aleksandra Uskoković; Jelena Marković; Goran Poznanović; Senka Vidović; Zoran Zeković; Aida Mujić; Ibrahim Mujić; Melita Vidaković
Pancreatic β-cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus. In the present study, we tested extracts from the edible mushroom Lactarius deterrimus and the chestnut Castanea sativa, as well as their mixture (MIX Ld/Cs), for potential beneficial effects on streptozotocin (STZ)-induced pancreatic β-cell death. Analysis of chelating effects, reducing power and radical-scavenging assays revealed strong antioxidant effects of the C. sativa extract and MIX Ld/Cs, while the L. deterrimus extract displayed a weak to moderate effect. The antioxidative effect of the chestnut extract corresponds with the high content of phenolics and flavonoids identified by HPLC analysis. In contrast, the mushroom extract contains relatively small amounts of phenols and flavonoids. However, both extracts, and especially their combination MIX Ld/Cs, increased cell viability after the STZ treatment as a result of a significant reduction of DNA damage and improved redox status. The chestnut extract and MIX Ld/Cs significantly lowered the STZ-induced increases in superoxide dismutase and catalase activities, while the mushroom extract had no impact on the activities of these antioxidant enzymes. However, the L. deterrimus extract exhibited good NO-scavenging activity. Different mechanisms that underlie antioxidant effects of the mushroom and chestnut extracts were discussed. When combined as in the MIX Ld/Cs, the extracts exhibited diverse but synergistic actions that ultimately exerted beneficial and protective effects against STZ-induced pancreatic β-cell death.
PLOS ONE | 2013
Jelena Marković; Nevena Grdović; Svetlana Dinić; Teodora Karan-Djurasevic; Aleksandra Uskoković; Jelena Arambašić; Mirjana Mihailović; Sonja Pavlovic; Goran Poznanović; Melita Vidaković
Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription.
European Journal of Nutrition | 2013
Jelena Arambašić; Mirjana Mihailović; Aleksandra Uskoković; Svetlana Dinić; Nevena Grdović; Jelena Marković; Goran Poznanović; Djordje Bajec; Melita Vidaković
Food & Function | 2014
Vladimir Mihailović; Jelena Katanić; Danijela Mišić; Vesna Stanković; Mirjana Mihailović; Aleksandra Uskoković; Jelena Arambašić; Slavica Solujić; Milan Mladenović; Nevena Stanković