Nevena Grdović
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nevena Grdović.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2013
Sanja Matić; Snežana Stanić; Desanka Bogojević; Melita Vidaković; Nevena Grdović; Svetlana Dinić; Slavica Solujić; Milan Mladenović; Nevena Stanković; Mirjana Mihailović
The present study was undertaken to investigate the hepatoprotective effect of the methanol extract of Cotinus coggygria Scop. in rats exposed to the hepatotoxic compound pyrogallol. Assessed with the alkaline version of the comet assay, 1000 and 2000mg/kg body weight (bw) of the extract showed a low level of genotoxicity, while 500mg/kg bw of the extract showed no genotoxic potential. Quantitative HPLC analysis of phenolic acids and flavonoids in the methanol extract of C. coggygria showed that myricetin was a major component. To test the hepatoprotective effect, a non-genotoxic dose of the C. coggygria extract and an equivalent amount of synthetic myricetin, as present in the extract, were applied either 2 or 12h prior to administration of 100mg/kg bw of pyrogallol. The extract and myricetin promoted restoration of hepatic function by significantly reducing pyrogallol-induced elevation in the serum enzymes AST, ALT, ALP and in total bilirubin. As measured by the decrease in total score and tail moment, the DNA damage in liver was also reduced by the extract and by myricetin. Our results suggest that pro-surviving Akt activity and STAT3 protein expression play important roles in decreasing DNA damage and in mediating hepatic protection by the extract. These results suggest that myricetin, as a major component in the extract, is responsible for the antigenotoxic and hepatoprotective properties of the methanol extract of C. coggygria against pyrogallol-induced toxicity.
British Journal of Nutrition | 2013
Svetlana Dinić; Jelena Arambašić; Mirjana Mihailović; Aleksandra Uskoković; Nevena Grdović; Jelena Marković; Borivoje Karadžić; Goran Poznanović; Melita Vidaković
The present study aimed to investigate the effects of the treatment with a-lipoic acid (LA), a naturally occurring compound possessing antioxidant activity, on liver oxidant stress in a rat model of streptozotocin (STZ)-induced diabetes by examining potential mechanistic points that influence changes in the expression of antioxidant enzymes such as catalase (CAT) and CuZn/Mn superoxide dismutase(s) (SOD). LA was administered for 4 weeks by daily intraperitoneal injections (10 mg/kg) to STZ-induced diabetic rats, starting from the last STZ treatment. LA administration practically normalised the activities of the indicators of hepatocellular injury, alanine and aspartate aminotransferases, and lowered oxidative stress, as observed by the thiobarbituric acid-reactive substance assay, restored the reduced glutathione:glutathione disulphide ratio and increased the protein sulfhydryl group content. The lower level of DNA damage detected by the comet assay revealed that LA reduced cytotoxic signalling, exerting a hepatoprotective effect. The LA-treated diabetic rats displayed restored specific enzymatic activities of CAT, CuZnSOD and MnSOD. Quantitative real-time PCR analysis showed that LA restored CAT gene expression to its physiological level and increased CuZnSOD gene expression, but the gene expression of MnSOD remained at the diabetic level. Although the amounts of CAT and CuZnSOD protein expression returned to the control levels, the protein expression of MnSOD was elevated. These results suggested that LA administration affected CAT and CuZnSOD expression mainly at the transcriptional level, and MnSOD expression at the post-transcriptional level. The observed LA-promoted decrease in the O-GlcNAcylation of extracellular signal-regulated kinase, protein 38 kinase, NF-kB, CCAAT/enhancer-binding protein and the antioxidative enzymes themselves in diabetic rats suggests that the regulatory mechanisms that supported the changes in antioxidative enzyme expression were also influenced by post-translational mechanisms.
Iubmb Life | 2007
Aleksandra Uskoković; Svetlana Dinić; Mirjana Mihailović; Ilijana Grigorov; Svetlana Ivanovic-Matic; Desanka Bogojević; Nevena Grdović; Jelena Arambašić; Melita Vidaković; Vesna Martinović; Miodrag Petrović; Goran Poznanović
The synthesis of alpha‐2‐macroglobulin (α2M) is low in adult rat liver and elevated in fetal liver. During the acute‐phase (AP) response it becomes significantly increased in both adult and fetal liver. In this work, the cross talk of STAT3 and NF‐κB transcription factors during α2M gene expression was analysed. Using immunoblotting, their cellular compartmentalization was examined by comparing the cytoplasmic levels of STAT3 and NF‐κB with their active equivalents, the 86 and 91 kDa isoforms and p65‐subunit, respectively, in the nuclear extract and nuclear matrix. Different partitioning dynamics of the transcription factors were observed. At the level of protein‐DNA interactions, studied by α2M promoter affinity chromatography, it was established that different ratios of promoter‐binding STAT3 isoforms participated in elevated hepatic transcription in the basal state fetus and the AP‐adult, but only the 91 kDa isoform in the AP‐fetus. Unchanged levels of DNA‐bound p65 in the control and AP‐fetus suggest that it participated in constitutive transcription. The promoter‐binding of p65 observed in the AP‐adult suggests that it was involved in transcriptional stimulation of α2M expression. The selective enrichment of the AP‐adult nuclear matrix with promoter‐binding STAT3 disclosed the importance of this association in the induction of transcription. Protein‐protein interactions were examined by co‐immunoprecipitation. Interactions between the 86 kDa STAT3 isoform and p65 that were observed in the control and AP‐fetus and of both the 86 and 91 kDa STAT3 isoforms with p65 in the AP‐adult, suggest that protein‐protein interactions were functionally connected to increased transcription. We concluded that α2M gene expression is driven by developmental‐ and AP‐related mechanisms that rely on STAT3/NF‐κB interplay. IUBMB Life, 59: 170‐178, 2007
Journal of Cellular Biochemistry | 2004
Melita Vidaković; Nevena Grdović; Piera Quesada; Jürgen Bode; Goran Poznanović
The distribution of poly(ADP‐ribose) polymerase‐1 (PARP‐1) over different nuclear compartments was studied by nuclear fractionation procedures and Western analysis revealing a prominent role of the nuclear matrix. This structure is operationally defined by the solubility properties of the A‐ and B‐type lamins under defined experimental conditions. We consistently observed that most of the nuclear matrix‐associated PARP‐1 partitioned, in an active form, with the insoluble, lamin‐enriched protein fractions that were prepared by a variety of established biochemical procedures. These PARP‐1–protein interactions resisted salt extraction, disulfide reduction, RNase and DNase digestion. An inherent ability of PARP‐1 to reassemble with the lamins became evident after a cycle of solubilization/dialysis using either urea or Triton X‐100 and disulfide reduction, indicating that these interactions were dominated by hydrophobic forces. Together with in vivo crosslinking and co‐immunoprecipitation experiments our results show that the lamins are prominent PARP‐1‐binding partners which could contribute to the functional sequestration of the enzyme on the nuclear matrix.
Cell Cycle | 2012
Marija Mojić; Sanja Mijatović; Danijela Maksimovic-Ivanic; Svetlana Dinić; Nevena Grdović; Djordje Miljković; Stanislava Stosic-Grujicic; Salvatore Tumino; Paolo Fagone; Katia Mangano; Mai-Britt Zocca; Yousef Al-Abed; James A. McCubrey; Ferdinando Nicoletti
We previously reported that the NO-modified form of HIV protease inhibitor Saquinavir (Saq) is a potent antitumoral agent efficient against numerous tumor cell lines in vitro and in vivo. In acute toxicity studies, doses of Saq-NO equivalent to DL100 of the parental drug were completely nontoxic. Beside direct effect on malignant cell growth, Saq-NO sensitizes certain type of cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell death. In this study, we evaluated the effects of Saq-NO on androgen-dependent prostate cancer LNCaP. Saq-NO inhibited both the growth of LNCaP cells in vitro and in xenograft models. Suppression of tumor growth was accompanied with cell cycle arrest in G0/G1 phase and established a persistent inhibition of proliferation. Furthermore, Saq-NO reverted sensitivity of LNCaP cells to TRAIL but not to TNF. Treatment of cells with Saq-NO induced transient upregulation of Akt and ERK1/2. This, however, did not represent the primary mode of action of Saq-NO, as elimination with specific inhibitors did not compromise the chemotherapic efficacy of the drug. However, permanent abrogation of phosphorylation of the S6 protein, which is the downstream target of both signaling pathways, was observed. Diminished S6 phosphorylation was associated with re-established sensitivity to TRAIL and reduction of X-linked inhibitor of apoptosis protein (XIAP). In summary, NO modification of Saq led to a new chemical entity with stronger and more pleiotropic antitumor activity than the parental drug.
Cryobiology | 2010
Nevena Grdović; Melita Vidaković; Mirjana Mihailović; Svetlana Dinić; Aleksandra Uskoković; Jelena Arambašić; Goran Poznanović
Although cryosurgery is attaining increasing clinical acceptance, our understanding of the mechanisms of cryogenic cell destruction remains incomplete. While it is generally accepted that cryoinjured cells die by necrosis, the involvement of apoptosis was recently shown. Our studies of liver cell death by cryogenic temperature revealed the activation of endonuclease p23 and its de novo association with the nuclear matrix. This finding is strongly suggestive of a programmed-type of cell death process. The presumed order underlying cryonecrotic cell death is addressed here by examining the mechanism of p23 activation. To that end, nuclear proteins that were prepared from fresh liver, which is devoid of p23 activity, were incubated with protein fractions isolated from liver exposed to freezing/thawing that possessed a presumed p23 activation factor. We observed that the activation of p23 was the result of a proteolytic event in which cathepsin D played a major role. Different patterns of proteolytic cleavage of nuclear proteins after in vitro incubation of nuclei and in samples isolated from frozen/thawed liver were observed. Although both processes induced p23 activation, the incubation experiments generated proteolytic hallmarks of apoptosis, while freezing/thawing of whole liver resulted in typical necrotic PARP-1 cleavage products and intact lamin B. As an explanation we offer a hypothesis that after freezing, cells possess the potential to die through necrotic as well as apoptotic mechanisms, based on our finding that the cytosol of cells exposed to cryogenic temperatures contains both necrotic and apoptotic executors of cell death.
Frontiers in Immunology | 2015
Melita Vidaković; Nevena Grdović; Svetlana Dinić; Mirjana Mihailović; Aleksandra Uskoković; Jelena Jovanovic
The pleiotropic chemokine (C–X–C motif) ligand 12 (CXCL12) has emerged as a crucial player in several diseases. The role of CXCL12 in diabetes promotion and progression remains elusive due to its multiple functions and the overwhelming complexity of diabetes. Diabetes is a metabolic disorder resulting from a failure in glucose regulation due to β-cell loss and/or dysfunction. In view of its ability to stimulate the regeneration, proliferation, and survival of β-cells, as well as its capacity to sustain local immune-isolation, CXCL12 has been considered in approaches aimed at attenuating type 1 diabetes. However, a note of caution emerges from examinations of the involvement of CXCL12 in the development of diabetes and its complications, as research data indicate that CXCL12 displays effects that range from protective to detrimental. Therefore, as a beneficial effect of CXCL12 in one process could have deleterious consequences in another, a more complete understanding of CXCL12 effects, in particular its functioning in the cellular microenvironment, is essential before CXCL12 can be considered in therapies for diabetes treatment.
Proceedings of the Japan Academy. Series B, Physical and biological sciences | 2016
Svetlana Dinić; Nevena Grdović; Aleksandra Uskoković; Miloš Đorđević; Mirjana Mihailović; Jelena Jovanovic; Goran Poznanović; Melita Vidaković
Due to intrinsically low levels of antioxidant enzyme expression and activity, insulin producing pancreatic β-cells are particularly susceptible to free radical attack. In diabetes mellitus, which is accompanied by high levels of oxidative stress, this feature of β-cells significantly contributes to their damage and dysfunction. In light of the documented pro-survival effect of chemokine C-X-C Ligand 12 (CXCL12) on pancreatic β-cells, we examined its potential role in antioxidant protection. We report that CXCL12 overexpression enhanced the resistance of rat insulinoma (Rin-5F) and primary pancreatic islet cells to hydrogen peroxide (H2O2). CXCL12 lowered the levels of DNA damage and lipid peroxidation and preserved insulin expression. This effect was mediated through an increase in catalase (CAT) activity. By activating downstream p38, Akt and ERK kinases, CXCL12 facilitated Nrf2 nuclear translocation and enhanced its binding to the CAT gene promoter, inducing constitutive CAT expression and activity that was essential for protecting β-cells from H2O2.
British Journal of Nutrition | 2012
Nevena Grdović; Svetlana Dinić; Jelena Arambašić; Mirjana Mihailović; Aleksandra Uskoković; Jelena Marković; Goran Poznanović; Senka Vidović; Zoran Zeković; Aida Mujić; Ibrahim Mujić; Melita Vidaković
Pancreatic β-cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus. In the present study, we tested extracts from the edible mushroom Lactarius deterrimus and the chestnut Castanea sativa, as well as their mixture (MIX Ld/Cs), for potential beneficial effects on streptozotocin (STZ)-induced pancreatic β-cell death. Analysis of chelating effects, reducing power and radical-scavenging assays revealed strong antioxidant effects of the C. sativa extract and MIX Ld/Cs, while the L. deterrimus extract displayed a weak to moderate effect. The antioxidative effect of the chestnut extract corresponds with the high content of phenolics and flavonoids identified by HPLC analysis. In contrast, the mushroom extract contains relatively small amounts of phenols and flavonoids. However, both extracts, and especially their combination MIX Ld/Cs, increased cell viability after the STZ treatment as a result of a significant reduction of DNA damage and improved redox status. The chestnut extract and MIX Ld/Cs significantly lowered the STZ-induced increases in superoxide dismutase and catalase activities, while the mushroom extract had no impact on the activities of these antioxidant enzymes. However, the L. deterrimus extract exhibited good NO-scavenging activity. Different mechanisms that underlie antioxidant effects of the mushroom and chestnut extracts were discussed. When combined as in the MIX Ld/Cs, the extracts exhibited diverse but synergistic actions that ultimately exerted beneficial and protective effects against STZ-induced pancreatic β-cell death.
PLOS ONE | 2013
Jelena Marković; Nevena Grdović; Svetlana Dinić; Teodora Karan-Djurasevic; Aleksandra Uskoković; Jelena Arambašić; Mirjana Mihailović; Sonja Pavlovic; Goran Poznanović; Melita Vidaković
Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription.