Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelena Skuljec is active.

Publication


Featured researches published by Jelena Skuljec.


Brain Research | 2009

Regional differences between grey and white matter in cuprizone induced demyelination

Viktoria Gudi; Darius Moharregh-Khiabani; Thomas Skripuletz; Paraskevi N. Koutsoudaki; Alexandra Kotsiari; Jelena Skuljec; Corinna Trebst; Martin Stangel

Cuprizone feeding is a commonly used model to study experimental de- and remyelination, with the corpus callosum being the most frequently investigated white matter tract. We have previously shown that demyelination is also extensive in the cerebral cortex in the cuprizone model. In the current study, we have performed a detailed analysis of the dynamics of demyelination in the cortex in comparison to the corpus callosum. Prominent and almost complete demyelination in the corpus callosum was observed after 4.5-5 weeks of 0.2% cuprizone feeding, whereas complete cortical demyelination was only observed after 6 weeks of cuprizone feeding. Interestingly, remyelination in the corpus callosum occurred even before the termination of cuprizone administration. Accumulation of microglia in the corpus callosum started as early as week 3 reaching its maximum at week 4.5 and was still significantly elevated at week 6 of cuprizone treatment. Within the cortex only a few scattered activated microglial cells were found. Furthermore, the intensity of astrogliosis, accumulation of oligodendrocyte progenitor cells and nestin positive cells differed between the two areas investigated. The time course and dynamics of demyelination differ in the corpus callosum and in the cortex, suggesting different underlying pathomechanisms.


Neurobiology of Disease | 2012

Characterisation of microglia during de- and remyelination: can they create a repair promoting environment?

Elke Voß; Jelena Skuljec; Viktoria Gudi; Thomas Skripuletz; Refik Pul; Corinna Trebst; Martin Stangel

Microglia play a key role in the initiation and perpetuation of de- and remyelination because of their ability to present antigens and clear cell debris by phagocytosis. Different factors expressed or secreted by microglia seem to play an important role in regenerative processes. But it remains unclear which factors lead to a protective microglial phenotype and recent data indicate region-specific differences within the central nervous system (CNS) for both de-/remyelination and microglial response. In order to identify important factors that promote neuroprotection, we examined changes in microglial phenotypes in the cuprizone model. We undertook an extensive and detailed analysis of the expression of surface markers as well as cytokines, growth factors, and the phagocytosis activity of microglia. We found a pronounced increase of phagocytosis activity of microglia during demyelination associated with an upregulation of phagocytic receptors, from which TREM-2b was the most prominent. The expression of MHC II was only increased at the peak of demyelination but costimulatory molecules showed no significant changes. Interestingly, the proinflammatory cytokine TNF-α was upregulated while the anti-inflammatory cytokines IL-10 and TGF-ß remained unchanged. The growth factors IFG-1 and FGF-2, which were both suggested to promote remyelination, were increased during demyelination. Our findings characterise changes of microglial markers during de- and remyelination indicating that debris clearance mediated via TREM-2b plays a central role in the regulation of these processes. Microglial phagocytosis as well as production of TNF-α, IGF-1, and FGF-2 seems to be important factors for the creation of an environment promoting regeneration.


PLOS ONE | 2011

Spatial and Temporal Profiles of Growth Factor Expression during CNS Demyelination Reveal the Dynamics of Repair Priming

Viktoria Gudi; Jelena Skuljec; Özlem Yildiz; Konstantin Frichert; Thomas Skripuletz; Darius Moharregh-Khiabani; Elke Voß; Kirsten Wissel; Sabine Wolter; Martin Stangel

Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various pathological conditions. We employed the well established murine cuprizone model of toxic demyelination to analyze the expression of 13 growth factors in the CNS during de- and remyelination. The temporal mRNA expression profile during demyelination and the subsequent remyelination were analyzed separately in the corpus callosum and cerebral cortex using laser microdissection and real-time PCR techniques. During demyelination a similar pattern of growth factor mRNA expression was observed in both areas with a strong up-regulation of NRG1 and GDNF and a slight increase of CNTF in the first week of cuprizone treatment. HGF, FGF-2, LIF, IGF-I, and TGF-ß1 were up-regulated mainly during peak demyelination. In contrast, during remyelination there were regional differences in growth factor mRNA expression levels. GDNF, CNTF, HGF, FGF-2, and BDNF were elevated in the corpus callosum but not in the cortex, suggesting tissue differences in the molecular regulation of remyelination in the white and grey matter. To clarify the cellular source we isolated microglia from the cuprizone lesions. GDNF, IGF-1, and FGF mRNA were detected in the microglial fraction with a temporal pattern corresponding to that from whole tissue PCR. In addition, immunohistochemical analysis revealed IGF-1 protein expression also in the reactive astrocytes. CNTF was located in astrocytes. This study identified seven different temporal expression patterns for growth factors in white and grey matter and demonstrated the importance of early tissue priming and exact orchestration of different steps during callosal and cortical de- and remyelination.


Cellular Immunology | 2011

CCL5 induces a pro-inflammatory profile in microglia in vitro.

Jelena Skuljec; Hui Sun; Refik Pul; Karelle Bénardais; Daniela Ragancokova; Darius Moharregh-Khiabani; Alexandra Kotsiari; Corinna Trebst; Martin Stangel

The chemokine receptors CCR1, CCR2, CCR3, CCR5, and CXCR2 have been found to be expressed on microglia in many neurodegenerative diseases, such as multiple sclerosis and Alzheimers disease. There is emerging evidence that chemokines, besides chemoattraction, might directly modulate reactive profiles of microglia. To address this hypothesis we have investigated the effects of CCL2, CCL3, CCL5, and CXCL1 on cytokine and growth factor production, NO synthesis, and phagocytosis in non-stimulated and lipopolysaccharide-stimulated primary rat microglia. The respective receptors CCR1, CCR5, and CXCR2 were shown to be functionally expressed on microglia. All tested chemokines stimulated chemotaxis whereas only CCL5 increased NO secretion and attenuated IL-10 as well as IGF-1 production in activated microglia. Based on these findings we propose that besides its chemoattractant function CCL5 has a modulatory effect on activated microglia.


Science Translational Medicine | 2014

Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis

Christine Happle; Nico Lachmann; Jelena Skuljec; Martin Wetzke; Mania Ackermann; Sebastian Brennig; Adele Mucci; Adan Chari Jirmo; Stephanie Groos; Anja Mirenska; Christina Hennig; Thomas Rodt; Jens P. Bankstahl; Nicolaus Schwerk; Thomas Moritz; Gesine Hansen

Macrophage progenitors are an effective and long-lasting therapy of hereditary pulmonary alveolar proteinosis. Macrophages Treat Rare Lung Disease Innate immune cell transplant into the lung could be an effective treatment for a rare lung disease. Happle et al. report that transplanting macrophage progenitors into lungs of a mouse model of hereditary pulmonary alveolar proteinosis (herPAP) improved lung function for up to 9 months after transplant. herPAP is caused by mutations in the granulocyte-macrophage colony-stimulating factor receptor genes, resulting in disturbed alveolar macrophage differentiation and life-threatening respiratory problems. A single transplantation of macrophage progenitors into a mouse model of herPAP resulted in differentiation into functional alveolar macrophages. If these data hold true in humans, this could not only provide a new treatment modality for herPAP but also serve as a proof of principle for other genetic diseases. Hereditary pulmonary alveolar proteinosis (herPAP) is a rare lung disease caused by mutations in the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor genes, resulting in disturbed alveolar macrophage differentiation, massive alveolar proteinosis, and life-threatening respiratory insufficiency. So far, the only effective treatment for herPAP is repetitive whole-lung lavage, a merely symptomatic and highly invasive procedure. We introduce pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for herPAP. In a murine disease model, intrapulmonary transplanted macrophage progenitors displayed selective, long-term pulmonary engraftment and differentiation into functional alveolar macrophages. A single transplantation ameliorated the herPAP phenotype for at least 9 months, resulting in significantly reduced alveolar proteinosis, normalized lung densities in chest computed tomography, and improved lung function. A significant and sustained disease resolution was also observed in a second, humanized herPAP model after intrapulmonary transplantation of human macrophage progenitors. The therapeutic effect was mediated by long-lived, lung-resident macrophages, which displayed functional and phenotypical characteristics of primary human alveolar macrophages. Our findings present the concept of organotopic transplantation of macrophage progenitors as an effective and long-lasting therapy of herPAP and may also serve as a proof of principle for other diseases, expanding current stem cell–based strategies toward potent concepts using the transplantation of differentiated cells.


Neurotoxicity Research | 2013

Cuprizone [Bis(Cyclohexylidenehydrazide)] is Selectively Toxic for Mature Oligodendrocytes

Karelle Bénardais; Alexandra Kotsiari; Jelena Skuljec; Paraskevi N. Koutsoudaki; Viktoria Gudi; Vikramjeet Singh; Franca Vulinovic; Thomas Skripuletz; Martin Stangel

Cuprizone [bis(cyclohexylidenehydrazide)]-induced toxic demyelination is an experimental animal model commonly used to study de- and remyelination in the central nervous system. In this model, mice are fed with the copper chelator cuprizone which leads to oligodendrocyte death with subsequent demyelination. The underlying mechanisms of cuprizone-induced oligodendrocyte death are still unknown, and appropriate in vitro investigations to study these mechanisms are not available. Thus, we studied cuprizone effects on rat primary glial cell cultures and on the neuroblastoma cell line SH-SY5Y. Treatment of cells with different concentrations of cuprizone failed to show effects on the proliferation and survival of SH-SY5Y cells, microglia, astrocytes, and oligodendrocyte precursor cells (OPC). In contrast, differentiated mature oligodendrocytes (OL) were found to be significantly affected by cuprizone treatment. This was accompanied by a reduced mitochondrial potential in cuprizone-treated OL. These results demonstrate that the main toxic target for cuprizone is mature OL, whilst other glial cells including OPC are not or only marginally affected. This explains the selective demyelination induced by cuprizone in vivo.


American Journal of Respiratory and Critical Care Medicine | 2013

Gene Correction of Human Induced Pluripotent Stem Cells Repairs the Cellular Phenotype in Pulmonary Alveolar Proteinosis

Nico Lachmann; Christine Happle; Mania Ackermann; Doreen Lüttge; Martin Wetzke; Sylvia Merkert; Miriam Hetzel; George Kensah; Monica Jara-Avaca; Adele Mucci; Jelena Skuljec; Anna-Maria Dittrich; Nils Pfaff; Sebastian Brennig; Axel Schambach; Doris Steinemann; Gudrun Göhring; Tobias Cantz; Ulrich Martin; Nicolaus Schwerk; Gesine Hansen; Thomas Moritz

RATIONALE Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.


Journal of Neuroimmune Pharmacology | 2011

Glatiramer Acetate Modulates TNF-α and IL-10 Secretion in Microglia and Promotes Their Phagocytic Activity

Refik Pul; Darius Moharregh-Khiabani; Jelena Skuljec; Thomas Skripuletz; Niklas Garde; Elke Voß; Martin Stangel

Glatiramer acetate (GA) is an approved immunomodulating agent for the treatment of relapsing–remitting multiple sclerosis. Its mode of action is attributed to a T helper cell-type 1 (Th1) to Th2 cytokine shift in T cells. Th2-type GA-reactive T cells migrate into the brain and act suppressive at the sites of inflammation. However, there is increasing evidence that the effect of GA is not confined to T cells. It inhibits broadly the activation of monocytes and induces peritoneal macrophages and monocytes to differentiate into a type 2 antigen-presenting cell (APC) secreting anti-inflammatory cytokines. Thus, we examined whether GA has also direct effects on microglia cells which are involved in modifying/directing the local microenvironment in the central nervous system. Primary rat microglia were purified and cultured under standard conditions. Griess reaction was used to measure one of the stable end products of nitric oxide (NO), nitrite. Tumor necrosis factor (TNF)-alpha and interleukin-10 (IL-10) were measured in the cell culture supernatants using ELISA. Phagocytosis was quantified with a FACS-based assay. Our experiments show that GA directly modulates microglia cells. It promotes the phagocytic activity and increases the secretion of IL-10 while it decreases that of TNFα. In contrast, there was no effect on NO production. GA induces a type 2 APC differentiation of microglia suggesting a general effect on myeloid monocytic cells. Using microglia we report for the first time that GA promotes phagocytosis which could play an important role in removal of debris.


Neuroscience | 2010

Remyelination after cuprizone induced demyelination is accelerated in mice deficient in the polysialic acid synthesizing enzyme St8siaIV.

Paraskevi N. Koutsoudaki; Herbert Hildebrandt; Viktoria Gudi; Thomas Skripuletz; Jelena Skuljec; Martin Stangel

Polysialic acid (PSA) is a carbohydrate polymer added post-translationally on the neural cell adhesion molecule (NCAM) affecting its adhesion properties. It has been suggested that the presence of PSA in demyelinated lesions in multiple sclerosis could prevent axon-glia interactions inhibiting spontaneous remyelination. The enzyme St8siaIV is one of the two polysialyltransferases responsible for PSA synthesis, and it is predominantly active during adult life. Here we treated 8-10-weeks old St8siaIV deficient and wild-type mice for 5 weeks with cuprizone, which is a reliable model for de- and remyelination in the corpus callosum and cortex. Developmental myelination of the St8siaIV knock-out mice was not disturbed and adult mice showed normal myelin protein expression. Demyelination did not differ between transgenic and wild-type mice but early myelin protein re-expression and thus remyelination were accelerated in St8siaIV knock-out mice during the first week after withdrawal of the toxin. This was mainly due to enhanced oligodendrocyte precursor cells (OPC) differentiation and to a lesser extent to OPC recruitment. These data are proof of principle that PSA expression interferes at least to some extent with remyelination in vivo.


Brain Behavior and Immunity | 2011

Lipopolysaccharide delays demyelination and promotes oligodendrocyte precursor proliferation in the central nervous system

Thomas Skripuletz; Elvira Miller; Lisa Grote; Viktoria Gudi; Refik Pul; Elke Voss; Jelena Skuljec; Darius Moharregh-Khiabani; Corinna Trebst; Martin Stangel

Systemic infection can influence the course in many diseases of the central nervous system (CNS) such as multiple sclerosis (MS), yet the relationship between infection outside the CNS and potential damage and/or protection within the CNS is still not understood. Activation of microglia is a characteristic feature of most CNS autoimmune disorders, including MS, and both protective and degenerative functions of microglia have been proposed. Hence, we analyzed the effects of a systemic inflammatory reaction induced by peripheral treatment with lipopolysaccharide (LPS) on microglial reaction and cuprizone induced de- and remyelination. We found that LPS administration delayed demyelination, which was linked with inhibition of microglial proliferation and reduced numbers of activated microglia. The phenotype of microglia changed as an increase of Toll-like receptor 4 was found. During remyelination, LPS treatment delayed the onset of myelin protein re-expression, but later there was a beneficial effect via an increase of proliferating oligodendrocyte precursor cells (OPC) and mature oligodendrocytes. Moreover, the expression of ciliary neurotrophic factor was increased in response to LPS, a growth factor known to mediate OPC proliferation. Additional experiments showed that the time window to induce LPS effects was limited and associated with the presence of microglia. In conclusion, LPS delayed demyelination and caused beneficial effects on remyelination via increasing the proliferation of OPC. These differences seem to be an effect of LPS induced microglial modulation and indicate that exposure to certain infectious agents within a given time window may be beneficial in promoting tissue repair.

Collaboration


Dive into the Jelena Skuljec's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge