Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelena Vider is active.

Publication


Featured researches published by Jelena Vider.


Journal of Experimental Medicine | 2010

Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts.

Sergio A. Quezada; Tyler R. Simpson; Karl S. Peggs; Taha Merghoub; Jelena Vider; Xiaozhou Fan; Ronald G. Blasberg; Hideo Yagita; Pawel Muranski; Paul A. Antony; Nicholas P. Restifo; James P. Allison

Adoptive transfer of large numbers of tumor-reactive CD8+ cytotoxic T lymphocytes (CTLs) expanded and differentiated in vitro has shown promising clinical activity against cancer. However, such protocols are complicated by extensive ex vivo manipulations of tumor-reactive cells and have largely focused on CD8+ CTLs, with much less emphasis on the role and contribution of CD4+ T cells. Using a mouse model of advanced melanoma, we found that transfer of small numbers of naive tumor-reactive CD4+ T cells into lymphopenic recipients induces substantial T cell expansion, differentiation, and regression of large established tumors without the need for in vitro manipulation. Surprisingly, CD4+ T cells developed cytotoxic activity, and tumor rejection was dependent on class II–restricted recognition of tumors by tumor-reactive CD4+ T cells. Furthermore, blockade of the coinhibitory receptor CTL-associated antigen 4 (CTLA-4) on the transferred CD4+ T cells resulted in greater expansion of effector T cells, diminished accumulation of tumor-reactive regulatory T cells, and superior antitumor activity capable of inducing regression of spontaneous mouse melanoma. These findings suggest a novel potential therapeutic role for cytotoxic CD4+ T cells and CTLA-4 blockade in cancer immunotherapy, and demonstrate the potential advantages of differentiating tumor-reactive CD4+ cells in vivo over current protocols favoring in vitro expansion and differentiation.


Nano Letters | 2009

Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine

Andrew Burns; Jelena Vider; Hooisweng Ow; Erik Herz; Oula Penate-Medina; Martin Baumgart; Steven M. Larson; Ulrich Wiesner; Michelle S. Bradbury

The development of molecularly targeted probes that exhibit high biostability, biocompatibility, and efficient clearance profiles is key to optimizing biodistribution and transport across biological barriers. Further, coupling probes designed to meet these criteria with high-sensitivity, quantitative imaging strategies is mandatory for ensuring early in vivo tumor detection and timely treatment response. These challenges have often only been examined individually, impeding the clinical translation of fluorescent probes. By simultaneously optimizing these design criteria, we created a new generation of near-infrared fluorescent core-shell silica-based nanoparticles (C dots) tuned to hydrodynamic diameters of 3.3 and 6.0 nm with improved photophysical characteristics over the parent dye. A neutral organic coating prevented adsorption of serum proteins and facilitated efficient urinary excretion. Detailed particle biodistribution studies were performed using more quantitative ex vivo fluorescence detection protocols and combined optical-PET imaging. The results suggest that this new generation of C dots constitutes a promising clinically translatable materials platform which may be adapted for tumor targeting and treatment.


Cancer Research | 2004

Molecular Imaging of Temporal Dynamics and Spatial Heterogeneity of Hypoxia-Inducible Factor-1 Signal Transduction Activity in Tumors in Living Mice

Inna Serganova; Michael Doubrovin; Jelena Vider; Vladimir Ponomarev; Suren Soghomonyan; Tatiana Beresten; Ludmila Ageyeva; Alexander Serganov; Shangde Cai; Julius Balatoni; Ronald G. Blasberg; Juri G. Gelovani

Tumor hypoxia is a spatially and temporally heterogeneous phenomenon, which results from several tumor and host tissue-specific processes. To study the dynamics and spatial heterogeneity of hypoxia-inducible factor-1 (HIF-1)-specific transcriptional activity in tumors, we used repetitive noninvasive positron emission tomography (PET) imaging of hypoxia-induced HIF-1 transcriptional activity in tumors in living mice. This approach uses a novel retroviral vector bearing a HIF-1–inducible “sensor” reporter gene (HSV1-tk/GFP fusion) and a constitutively expressed “beacon” reporter gene (DsRed2/XPRT). C6 glioma cells transduced with this multireporter system revealed dose-dependent patterns in temporal dynamics of HIF-1 transcriptional activity induced by either CoCl2 or decreased atmospheric oxygen concentration. Multicellular spheroids of C6 reporter cells developed a hypoxic core when >350 μm in diameter. 18F-2′-fluoro-2′deoxy-1β-D-arabionofuranosyl-5-ethyl-uracil (FEAU) PET revealed spatial heterogeneity of HIF-1 transcriptional activity in reporter xenografts in mice as a function of size or ischemia-reperfusion injury. With increasing tumor diameter (>3 mm), a marked increase in HIF-1 transcriptional activity was observed in the core regions of tumors. Even a moderate ischemia-reperfusion injury in small C6 tumors caused a rapid induction of HIF-1 transcriptional activity, which persisted for a long time because of the inability of C6 tumors to rapidly compensate acute changes in tumor microcirculation.


Free Radical Research | 2002

Anti-angiogenic property of edible berries

Sashwati Roy; Savita Khanna; Helaine M. Alessio; Jelena Vider; Debasis Bagchi; Manashi Bagchi; Chandan K. Sen

Recent studies show that edible berries may have potent chemopreventive properties. Anti-angiogenic approaches to prevent and treat cancer represent a priority area in investigative tumor biology. Vascular endothelial growth factor (VEGF) plays a crucial role for the vascularization of tumors. The vasculature in adult skin remains normally quiescent. However, skin retains the capacity for brisk initiation of angiogenesis during inflammatory skin diseases such as psoriasis and skin cancers. We sought to test the effects of multiple berry extracts on inducible VEGF expression by human HaCaT keratinocytes. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seed, and strawberry) and a grape seed proanthocyanidin extract (GSPE) were studied. The extracts and uptake of their constituents by HaCaT were studied using a multi-channel HPLC-CoulArray approach. Antioxidant activity of the extracts was determined by ORAC. Cranberry, elderberry and raspberry seed samples were observed to possess comparable ORAC values. The antioxidant capacity of these samples was significantly lower than that of the other samples studied. The ORAC values of strawberry powder and GSPE were higher than cranberry, elderberry or raspberry seed but significantly lower than the other samples studied. Wild bilberry and blueberry extracts possessed the highest ORAC values. Each of the berry samples studied significantly inhibited both H 2 O 2 as well as TNF f induced VEGF expression by the human keratinocytes. This effect was not shared by other antioxidants such as f -tocopherol or GSPE but was commonly shared by pure flavonoids. Matrigel assay using human dermal microvascular endothelial cells showed that edible berries impair angiogenesis.


Nature Biotechnology | 2008

Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo

Erik Henke; Jonathan Perk; Jelena Vider; Paola de Candia; Yvette Chin; David B. Solit; Vladimir Ponomarev; Luca Cartegni; Katia Manova; Neal Rosen; Robert Benezra

Transcription factors are important targets for the treatment of a variety of malignancies but are extremely difficult to inhibit, as they are located in the cells nucleus and act mainly by protein-DNA and protein-protein interactions. The transcriptional regulators Id1 and Id3 are attractive targets for cancer therapy as they are required for tumor invasiveness, metastasis and angiogenesis. We report here the development of an antitumor agent that downregulates Id1 effectively in tumor endothelial cells in vivo. Efficient delivery and substantial reduction of Id1 protein levels in the tumor endothelium were effected by fusing an antisense molecule to a peptide known to home specifically to tumor neovessels. In two different tumor models, systemic delivery of this drug led to enhanced hemorrhage, hypoxia and inhibition of primary tumor growth and metastasis, similar to what is observed in Id1 knockout mice. Combination with the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin yielded virtually complete growth suppression of aggressive breast tumors.


Pathophysiology | 2001

Acute immune response in respect to exercise-induced oxidative stress

Jelena Vider; Jane Lehtmaa; Tiiu Kullisaar; Tiiu Vihalemm; Kersti Zilmer; Ceslava Kairane; Anatoli Landõr; Toomas Karu; Mihkel Zilmer

The relationship between exhaustive exercise, oxidative stress, the protective capacity of the antioxidant defense system and cellular immune response has been determined. Exhaustive exercise in well-trained young men (n=19)-induced leukocytosis, decreased proportion of activated-lymphocyte subsets (CD4+ and CD8+) expressing CD69, decreased lymphocyte mitogenic response to concanavalin A (ConA) and phytohemagglutinin (PHA), increased lipid peroxidation, increased total antioxidant status (TAS) and catalase activity, immediately after exercise. Suppressed blood concentration of T-lymphocyte subsets (CD3+, CD4+, CD8+, NK), increased TAS and blood total glutathione (TGSH) in early recovery period (30 min after exercise) were found. Strong positive correlation was observed between TGSH and lymphocyte mitogenic response to ConA and PHA (r=0.85 and 0.85, respectively) immediately after exercise. Moderate positive correlation was observed between TAS and lymphocyte mitogenic response to PHA (r=0.59) immediately after exercise as well as between TAS and lymphocyte mitogenic response to PHA and ConA (r=0.69 and 0.54, respectively). Moderate to weak correlation was observed between TAS and conjugated dienes with exercise (r=0.66) as well as in 30-min recovery (r=0.50). After a short-term bout of exhaustive exercise, immune system was characterized by acute phase response, which was accompanied with oxidative stress. Suppression of the cellular immunity 30 min after exercise shows that this period is not enough for recovery after exhaustive exercise. The results suggest the interactions between exercise-induced oxidative stress and immune response.


Cancer Research | 2013

MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells

Prue N. Plummer; Ruth Freeman; Ryan J. Taft; Jelena Vider; Michael Sax; Brittany Umer; Dingcheng Gao; Christopher Johns; John S. Mattick; Stephen D. Wilton; Vito Ferro; Nigel A.J. McMillan; Alexander Swarbrick; Vivek Mittal; Albert S. Mellick

Bone marrow-derived endothelial progenitor cells (EPC) contribute to the angiogenesis-dependent growth of tumors in mice and humans. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. miRNAs have emerged as key regulators of several cellular processes including angiogenesis; however, whether miRNAs contribute to bone marrow-mediated angiogenesis has remained unknown. Here, we show that genetic ablation of miRNA-processing enzyme Dicer, specifically in the bone marrow, decreased the number of circulating EPCs, resulting in angiogenesis suppression and impaired tumor growth. Furthermore, genome-wide deep sequencing of small RNAs revealed tumor EPC-intrinsic miRNAs including miR-10b and miR-196b, which have been previously identified as key regulators of HOX signaling and adult stem cell differentiation. Notably, we found that both miR-10b and miR-196b are responsive to vascular endothelial growth factor stimulation and show elevated expression in human high-grade breast tumor vasculature. Strikingly, targeting miR-10b and miR-196b led to significant defects in angiogenesis-mediated tumor growth in mice. Targeting these miRNAs may constitute a novel strategy for inhibiting tumor angiogenesis.


Clinical Cancer Research | 2011

Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype.

Inna Serganova; Asif Rizwan; Xiaohui Ni; Sunitha B. Thakur; Jelena Vider; James A. Russell; Ronald G. Blasberg; Jason A. Koutcher

Purpose: We compared the metabolic profiles and the association between LDH-A expression and lactate production in two isogenic murine breast cancer cell lines and tumors (67NR and 4T1). These cell lines were derived from a single mammary tumor and have different growth and metabolic phenotypes. Experimental Design: LDH-A expression, lactate concentration, glucose utilization, and oxygen consumption were measured in cells, and the potential relationship between tumor lactate levels [measured by magnetic resonance spectroscopic imaging (MRSI)] and tumor glucose utilization [measured by [18F]2-deoxy-2-fluoro-d-glucose positron emission tomography ([18F]FDG-PET)] was assessed in orthotopic breast tumors derived from these cell lines. Results: We show a substantial difference in LDH-A expression between 67NR and 4T1 cells under normoxia and hypoxia. We also show that small orthotopic 4T1 tumors generate 10-fold more lactate than corresponding 67NR tumors. The high lactate levels in small primary 4T1 tumors are associated with intense pimonidazole staining (a hypoxia indicator). Less-intense hypoxia staining was observed in the larger 67NR tumors and is consistent with the gradual increase and plateau of lactate concentration in enlarging 67NR tumors. Conclusions: Lactate-MRSI has a greater dynamic range than [18F]FDG-PET and may be a more sensitive measure with which to evaluate the aggressive and metastatic potential of primary breast tumors. Clin Cancer Res; 17(19); 6250–61. ©2011 AACR.


Blood | 2013

Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies.

Utthara Nayar; Pin Lu; Rebecca L. Goldstein; Jelena Vider; Gianna Ballon; Anna Rodina; Tony Taldone; Hediye Erdjument-Bromage; Max Chomet; Ronald G. Blasberg; Ari Melnick; Leandro Cerchietti; Gabriela Chiosis; Y. Lynn Wang; Ethel Cesarman

PU-H71 is a purine-scaffold Hsp90 inhibitor that, in contrast to other Hsp90 inhibitors, displays unique selectivity for binding the fraction of Hsp90 that is preferentially associated with oncogenic client proteins and enriched in tumor cells (teHsp90). This property allows PU-H71 to potently suppress teHsp90 without inducing toxicity in normal cells. We found that lymphoma cells infected by Epstein-Barr virus or Kaposi sarcoma-associated herpes virus (KSHV) are exquisitely sensitive to this compound. Using PU-H71 affinity capture and proteomics, an unbiased approach to reveal oncogenic networks, we identified the teHsp90 interactome in KSHV(+) primary effusion lymphoma cells. Viral and cellular proteins were identified, including many involved in nuclear factor (NF)-κB signaling, apoptosis, and autophagy. KSHV vFLIP is a viral oncoprotein homologous to cFLIPs, with NF-κB-activating and antiapoptotic activities. We show that teHsp90 binds vFLIP but not cFLIPs. Treatment with PU-H71 induced degradation of vFLIP and IKKγ, NF-κB downregulation, apoptosis and autophagy in vitro, and more importantly, tumor responses in mice. Analysis of the interactome revealed apoptosis as a central pathway; therefore, we tested a BCL2 family inhibitor in primary effusion lymphoma cells. We found strong activity and synergy with PU-H71. Our findings demonstrate PU-H71 affinity capture identifies actionable networks that may help design rational combinations of effective therapies.


The FASEB Journal | 2011

MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas.

Ruimin Huang; Nai Kong V Cheung; Jelena Vider; Irene Y. Cheung; William L. Gerald; Satish K. Tickoo; Eric C. Holland; Ronald G. Blasberg

The BMI1 gene is overexpressed in ~90% of human neuroblastomas. However, little is known about the regulation of BMI1 expression. Using microarray and immunohistochemical analysis, we show that BMI1 expression correlated with MYCN levels in MYCN‐amplified human neuroblastomas, and with MYC levels in the MYCN‐nonamplified group. We further demonstrated that BMI1 is a direct target gene of MYCN/MYC in 3 neuroblastoma cell lines: BE (2)‐C, LAN1, and SH‐SY5Y. Overexpression of MYCN or MYC transactivated the BMI1 promoter and up‐regulated BMI1 gene expression. shRNA‐mediated knockdown of MYCN or MYC decreased BMI1 gene expression. Chromatin immunoprecipitation and point‐mutation assays revealed that both MYCN and MYC bind to the E‐box within the BMI1 promoter. Overexpression of BMI1, MYCN, and MYC independently increased both cell proliferation and tumor growth. Conversely, specific inhibition of BMI1, MYCN, and MYC decreased tumor cell proliferation and tumor growth. Interestingly, BMI1 suppression in MYCN/MYC‐overexpressing cells resulted in significantly greater inhibition compared to that in mock‐transduced and parental cells. Our results indicate that MYCN and MYC regulate BMI1 gene expression at the transcriptional level and that dysregulation of the BMI1 gene mediated by MYCN or MYC overexpression, confers increased cell proliferation during neuroblastoma genesis and tumor progression.—Huang, R., Cheung, N.‐K. V., Vider, J., Cheung, I. Y., Gerald, W. L., Tickoo, S. K., Holland, E. C., Blasberg, R. G. MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas. FASEB J. 25, 4138–4149 (2011). www.fasebj.org

Collaboration


Dive into the Jelena Vider's collaboration.

Top Co-Authors

Avatar

Ronald G. Blasberg

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vladimir Ponomarev

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Inna Serganova

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Doubrovin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juri Gelovani Tjuvajev

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge