Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jemma L. Geoghegan is active.

Publication


Featured researches published by Jemma L. Geoghegan.


PLOS Pathogens | 2017

Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families

Jemma L. Geoghegan; Sebastián Duchêne; Edward C. Holmes

The cross-species transmission of viruses from one host species to another is responsible for the majority of emerging infections. However, it is unclear whether some virus families have a greater propensity to jump host species than others. If related viruses have an evolutionary history of co-divergence with their hosts there should be evidence of topological similarities between the virus and host phylogenetic trees, whereas host jumping generates incongruent tree topologies. By analyzing co-phylogenetic processes in 19 virus families and their eukaryotic hosts we provide a quantitative and comparative estimate of the relative frequency of virus-host co-divergence versus cross-species transmission among virus families. Notably, our analysis reveals that cross-species transmission is a near universal feature of the viruses analyzed here, with virus-host co-divergence occurring less frequently and always on a subset of viruses. Despite the overall high topological incongruence among virus and host phylogenies, the Hepadnaviridae, Polyomaviridae, Poxviridae, Papillomaviridae and Adenoviridae, all of which possess double-stranded DNA genomes, exhibited more frequent co-divergence than the other virus families studied here. At the other extreme, the virus and host trees for all the RNA viruses studied here, particularly the Rhabdoviridae and the Picornaviridae, displayed high levels of topological incongruence, indicative of frequent host switching. Overall, we show that cross-species transmission plays a major role in virus evolution, with all the virus families studied here having the potential to jump host species, and that increased sampling will likely reveal more instances of host jumping.


Theoretical Population Biology | 2013

Exploring epiallele stability in a population-epigenetic model

Jemma L. Geoghegan; Hamish G. Spencer

Differences in transgenerational epigenetic stability can result in a diversity of phenotypes among genetically identical individuals. Here we present a model that encapsulates non-genomic phenotypic variation in a population over two distinct environments that each act as a stimulus for epigenetic modification. By allowing different levels of epigenetic resetting, thereby increasing epigenetic diversity, we explore the dynamics of multiple epiallelic states subject to selection in a population-epigenetic model. We find that both epigenetic resetting and the environmental frequency are crucial parameters in this system. Our results illustrate the regions of parameter space that enable up to three equilibria to be simultaneously locally stable. Furthermore, it is clear that both continued environmental induction and epigenetic resetting prevent epigenetic fixation, maintaining phenotypic variation through different epiallelic states. However, unless both environments are reasonably common, levels of epigenetically-maintained variation are low. We argue that it is vital that non-genomic phenotypic diversity is not ignored in evolutionary theory, but instead regarded as distinct epiallelic variants. Ultimately, a critical goal of future experiments should be to determine accurate rates of epigenetic resetting, especially over several generations, in order to establish the long-term significance of epigenetic inheritance.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Virological factors that increase the transmissibility of emerging human viruses

Jemma L. Geoghegan; Alistair M. Senior; Francesca Di Giallonardo; Edward C. Holmes

Significance With changes in land use and increased urbanization, the frequency with which pathogens jump species barriers to emerge in new hosts is expected to rise. Knowing which viruses may be more likely to become transmissible among humans, as opposed to only generating dead-end spillover infections, would be of considerable benefit to pandemic planning. Using multivariate modeling and multimodel inference, we sought to both identify and quantify those biological features of viruses that best determine interhuman transmissibility. This analysis revealed that chronic, nonsegmented, non–vector-borne, nonenveloped viruses with low host mortality had the highest likelihood of being transmissible among humans whereas genomic features had little predictive power. Our analysis therefore reveals that multiple virological features determine the likelihood of successful emergence. The early detection of pathogens with epidemic potential is of major importance to public health. Most emerging infections result in dead-end “spillover” events in which a pathogen is transmitted from an animal reservoir to a human but is unable to achieve the sustained human-to-human transmission necessary for a full-blown epidemic. It is therefore critical to determine why only some virus infections are efficiently transmitted among humans whereas others are not. We sought to determine which biological features best characterized those viruses that have achieved sustained human transmission. Accordingly, we compiled a database of 203 RNA and DNA human viruses and used an information theoretic approach to assess which of a set of key biological variables were the best predictors of human-to-human transmission. The variables analyzed were as follows: taxonomic classification; genome length, type, and segmentation; the presence or absence of an outer envelope; recombination frequency; duration of infection; host mortality; and whether or not a virus exhibits vector-borne transmission. This comparative analysis revealed multiple strong associations. In particular, we determined that viruses with low host mortality, that establish long-term chronic infections, and that are nonsegmented, nonenveloped, and, most importantly, not transmitted by vectors were more likely to be transmissible among humans. In contrast, variables including genome length, genome type, and recombination frequency had little predictive power. In sum, we have identified multiple biological features that seemingly determine the likelihood of interhuman viral transmissibility, in turn enabling general predictions of whether viruses of a particular type will successfully emerge in human populations.


Journal of Virology | 2015

Phylodynamics of Enterovirus A71-Associated Hand, Foot, and Mouth Disease in Viet Nam

Jemma L. Geoghegan; Le Van Tan; Denise Kühnert; Rebecca A. Halpin; Xudong Lin; Ari Simenauer; Asmik Akopov; Suman R. Das; Timothy B. Stockwell; Susmita Shrivastava; Nghiem My Ngoc; Le Thi Tam Uyen; Nguyen Thi Kim Tuyen; Tran Tan Thanh; Vu Thi Ty Hang; Phan Tu Qui; Nguyen Thanh Hung; Truong Huu Khanh; Le Quoc Thinh; Le Nguyen Thanh Nhan; Hoang Minh Tu Van; Do Chau Viet; Ha Manh Tuan; Ho Lu Viet; Tran Tinh Hien; Nguyen Van Vinh Chau; Guy Thwaites; Bryan T. Grenfell; Tanja Stadler; David E. Wentworth

ABSTRACT Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia. IMPORTANCE EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.


PLOS Pathogens | 2014

Contact heterogeneity, rather than transmission efficiency, limits the emergence and spread of canine influenza virus.

Benjamin D. Dalziel; Kai Huang; Jemma L. Geoghegan; Nimalan Arinaminpathy; Edward J. Dubovi; Bryan T. Grenfell; Stephen P. Ellner; Edward C. Holmes; Colin R. Parrish

Host-range shifts in influenza virus are a major risk factor for pandemics. A key question in the study of emerging zoonoses is how the evolution of transmission efficiency interacts with heterogeneity in contact patterns in the new host species, as this interplay influences disease dynamics and prospects for control. Here we use a synergistic mixture of models and data to tease apart the evolutionary and demographic processes controlling a host-range shift in equine H3N8-derived canine influenza virus (CIV). CIV has experienced 15 years of continuous transfer among dogs in the United States, but maintains a patchy distribution, characterized by sporadic short-lived outbreaks coupled with endemic hotspots in large animal shelters. We show that CIV has a high reproductive potential in these facilities (mean R0 = 3.9) and that these hotspots act as refugia from the sparsely connected majority of the dog population. Intriguingly, CIV has evolved a transmission efficiency that closely matches the minimum required to persist in these refugia, leaving it poised on the extinction/invasion threshold of the host contact network. Corresponding phylogenetic analyses show strong geographic clustering in three US regions, and that the effective reproductive number of the virus (Re) in the general dog population is close to 1.0. Our results highlight the critical role of host contact structure in CIV dynamics, and show how host contact networks could shape the evolution of pathogen transmission efficiency. Importantly, efficient control measures could eradicate the virus, in turn minimizing the risk of future sustained transmission among companion dogs that could represent a potential new axis to the human-animal interface for influenza.


Open Biology | 2017

Predicting virus emergence amid evolutionary noise

Jemma L. Geoghegan; Edward C. Holmes

The study of virus disease emergence, whether it can be predicted and how it might be prevented, has become a major research topic in biomedicine. Here we show that efforts to predict disease emergence commonly conflate fundamentally different evolutionary and epidemiological time scales, and are likely to fail because of the enormous number of unsampled viruses that could conceivably emerge in humans. Although we know much about the patterns and processes of virus evolution on evolutionary time scales as depicted in family-scale phylogenetic trees, these data have little predictive power to reveal the short-term microevolutionary processes that underpin cross-species transmission and emergence. Truly understanding disease emergence therefore requires a new mechanistic and integrated view of the factors that allow or prevent viruses spreading in novel hosts. We present such a view, suggesting that both ecological and genetic aspects of virus emergence can be placed within a simple population genetic framework, which in turn highlights the importance of host population size and density in determining whether emergence will be successful. Despite this framework, we conclude that a more practical solution to preventing and containing the successful emergence of new diseases entails ongoing virological surveillance at the human–animal interface and regions of ecological disturbance.


Journal of Virological Methods | 2015

A generic assay for whole-genome amplification and deep sequencing of enterovirus A71.

Le Van Tan; Nguyen Thi Kim Tuyen; Tran Tan Thanh; Tran Thuy Ngan; Hoang Minh Tu Van; Saraswathy Sabanathan; Tran Thi My Van; Le Thi My Thanh; Lam Anh Nguyet; Jemma L. Geoghegan; Kien Chai Ong; David Perera; Vu Thi Ty Hang; Nguyen Thi Han Ny; Nguyen To Anh; Do Quang Ha; Phan Tu Qui; Do Chau Viet; Ha Manh Tuan; Kum Thong Wong; Edward C. Holmes; Nguyen Van Vinh Chau; Guy Thwaites; H. Rogier van Doorn

Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.


PLOS Neglected Tropical Diseases | 2014

Seasonal drivers of the epidemiology of arthropod-borne viruses in Australia

Jemma L. Geoghegan; Peter J. Walker; Jean-Bernard Duchemin; Isabelle Jeanne; Edward C. Holmes

Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts. However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses: bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-surveillance data of 180 sentinel herds between 2004–2012, we compared seasonal parameters across latitudes, ranging from the tropical north (−10°S) to the more temperate south (−40°S). This analysis revealed marked differences in seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the average number of seroconversions have a strong geographical component, which likely reflect patterns of vector abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that will enable better risk predictions.


Bioinformatics | 2016

Estimating evolutionary rates using time-structured data: a general comparison of phylogenetic methods

Sebastián Duchêne; Jemma L. Geoghegan; Edward C. Holmes; Simon Y. W. Ho

MOTIVATION In rapidly evolving pathogens, including viruses and some bacteria, genetic change can accumulate over short time-frames. Accordingly, their sampling times can be used to calibrate molecular clocks, allowing estimation of evolutionary rates. Methods for estimating rates from time-structured data vary in how they treat phylogenetic uncertainty and rate variation among lineages. We compiled 81 virus data sets and estimated nucleotide substitution rates using root-to-tip regression, least-squares dating and Bayesian inference. RESULTS Although estimates from these three methods were often congruent, this largely relied on the choice of clock model. In particular, relaxed-clock models tended to produce higher rate estimates than methods that assume constant rates. Discrepancies in rate estimates were also associated with high among-lineage rate variation, and phylogenetic and temporal clustering. These results provide insights into the factors that affect the reliability of rate estimates from time-structured sequence data, emphasizing the importance of clock-model testing. CONTACT sduchene@unimelb.edu.au or garzonsebastian@hotmail.comSupplementary information: Supplementary data are available at Bioinformatics online.


Virology | 2014

Molecular evolution and antigenic variation of European brown hare syndrome virus (EBHSV).

Ana M. Lopes; Lorenzo Capucci; Dolores Gavier-Widén; Ghislaine Le Gall-Reculé; Emiliana Brocchi; Ilaria Barbieri; Agnès Quéméner; Jacques Le Pendu; Jemma L. Geoghegan; Edward C. Holmes; Pedro J. Esteves; Joana Abrantes

European brown hare syndrome virus (EBHSV) is the aetiological agent of European brown hare syndrome (EBHS), a disease affecting Lepus europaeus and Lepus timidus first diagnosed in Sweden in 1980. To characterize EBHSV evolution we studied hare samples collected in Sweden between 1982 and 2008. Our molecular clock dating is compatible with EBHSV emergence in the 1970s. Phylogenetic analysis revealed two lineages: Group A persisted until 1989 when it apparently suffered extinction; Group B emerged in the mid-1980s and contains the most recent strains. Antigenic differences exist between groups, with loss of reactivity of some MAbs over time, which are associated with amino acid substitutions in recognized epitopes. A role for immune selection is also supported by the presence of positively selected codons in exposed regions of the capsid. Hence, EBHSV evolution is characterized by replacement of Group A by Group B viruses, suggesting that the latter possess a selective advantage.

Collaboration


Dive into the Jemma L. Geoghegan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian G. Barr

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge