Jeng Shiung Jan
National Cheng Kung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeng Shiung Jan.
Supramolecular Chemistry | 2010
Jeffery Gaspard; James A. Silas; Daniel F. Shantz; Jeng Shiung Jan
Here we report the supramolecular assembly of poly(l-lysine)-b-polyglycine diblock copolypeptides at different solution conditions. Light scattering and confocal microscopy indicate that the supramolecular aggregates initially formed in solution are vesicles with a broad size distribution, depending strongly on the initial processing conditions. The vesicles formed after multiple pH cycles appear independent of the initial processing conditions and are related to the thermodynamic nature of the assembled supramolecular aggregates. Circular dichroism results verify that this change in size observed over pH cyclings tracks with the conformation changes of the lysine block confined in the vesicle membranes. This appears interesting for peptosome-based materials, implying a high level of fluidity in the membrane that allows the supramolecular aggregates formed in solution to respond to changes in pH. The results also show that the external stimulus, which is the change of pH in this study, provides an additional means to regulate polypeptide vesicle size and size distribution.
Colloids and Surfaces B: Biointerfaces | 2010
Jun Kun Lai; Tzu Han Chuang; Jeng Shiung Jan; Steven S.-S. Wang
We report the immobilization of a model enzyme, papain, within silica matrices by combining vesiclization of poly-l-lysine-b-polyglycine block copolypeptides with following silica mineralization. Our novel strategy utilizes block polypeptide vesicles to induce the condensation of orthosilicic acid while trapping an enzyme within and between vesicles. The polypeptide mediated silica-immobilized enzyme exhibits enhanced pH and thermal stability and reusability, comparing with the free and vesicle encapsulated enzyme. The enhanced enzymatic activity in the immobilized enzyme is due to the confinement of the enzyme in the polypeptide mediated silica matrices. Kinetic analysis shows that the enzyme functionality is determined by the structure and property of silica/polypeptide matrices. The proposed novel strategy provides an alternative route for the synthesis of a broad range of functional bionanocomposites entrapped within silica nanostructures.
Biochimica et Biophysica Acta | 2012
Kuan Nan Liu; Chia Min Lai; Yi Ting Lee; Sung Ning Wang; Rita P.-Y. Chen; Jeng Shiung Jan; Hwai-Shen Liu; Steven S.-S. Wang
BACKGROUND More than twenty-seven human proteins can fold abnormally to form amyloid deposits associated with a number of degenerative diseases. The research reported here is aimed at exploring the connection between curcumins thermostability and its inhibitory activity toward the amyloid fibrillation of hen egg-white lysozyme (HEWL). METHODS ThT fluorescence spectroscopy, equilibrium thermal denaturation analysis, and transmission electron microscopy were employed for structural characterization. MTT reduction and flow cytometric analyses were used to examine cell viability. RESULTS AND CONCLUSION The addition of thermally pre-treated curcumin was found to attenuate the formation of HEWL fibrils and the observed fibrillation inhibition was dependent upon the pre-incubation temperature of curcumin. Our results also demonstrated that the cytotoxic effects of fibrillar HEWL species on PC 12 and SH-SY5Y cells were decreased and negatively correlated with curcumins thermostability. Next, an enhanced stability of HEWL was perceived upon the addition of curcumin pre-incubated at lower temperature. Furthermore, we found that the alteration of curcumins thermostability was associated with its inhibitory potency against HEWL fibrillation. GENERAL SIGNIFICANCE We believe that the results from this research may contribute to the development of effective therapeutics for amyloidoses.
Journal of Biomedical Materials Research | 1998
Chun Hsiung Huang; Tai-Horng Young; Yung Ta Lee; Jeng Shiung Jan; Cheng-Kung Cheng
From January 1985 to December 1990, 598 consecutive New Jersey low-contact stress (LCS) total knee arthroplasties (TKAs) were performed for gonarthrosis. Among these 598 operations, 322 were with rotating platform elements and 276 were with meniscal bearing elements. During 5 to 8 years of follow-up, eight knees had severe symptomatic polyethylene failure that required revision surgery; all eight cases were meniscal bearing types. The failed polyethylene inserts were retrieved and studied. It was observed that there were four probable failure mechanisms associated with the catastrophic polyethylene wear. First, insufficient thickness of the meniscal bearing was the major reason for wear. Second, the malpositioning of the metal tibial tray in the transverse plane resulted in the breaking of the meniscal bearing. Third, the inability of the patellar to rotate due to tissue ingrowth made the polyethylene break. Last, yellowing of the subsurface of the meniscal bearing was a sign of polyethylene failure. These four possible failure mechanisms are all associated with the design of the meniscal bearing type of LCS knee prostheses. Therefore, it is suggested that the design of the LCS knee prosthesis should be modified.
Langmuir | 2011
Jeng Shiung Jan; Tzu Han Chuang; Po Jui Chen; Hsisheng Teng
A simple and versatile approach is proposed to use the LbL-assembled polypeptide macromolecular assemblies as mediating agents and templates for directed growth of gold nanoparticles and biomimetic silica mineralization, allowing the synthesis of polypeptide/silica and polypeptide/gold nanoparticle/silica composite materials, as well as mesoporous silica (meso-SiO2) and gold nanoparticle/mesoporous silica (Au NP/meso-SiO2). The formation of tubular nanostructures was demonstrated by silicification and growth of gold nanoparticles within macromolecular assemblies formed by poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA) using polycarbonate membranes as templates. The experimental data revealed that the silicified macromolecular assemblies adopted mainly sheet/turn conformation. The as-prepared mesoporous silica materials possessed well-defined tubular structures with pore size and porosity depending on the size of sheet/turn aggregates, which is a function of the molecular weight of polypeptides. The directed growth of Au NP and subsequent silica mineralization in the macromolecular assembly resulted in Au NP/meso-SiO2 tubes with uniform nanoparticle size and the as-prepared materials exhibited promising catalytic activity toward the reduction of p-nitrophenol. This approach provides a facile and general method to synthesize organic-inorganic composite materials, oxide and metal-oxide nanomaterials with different compositions and structures.
Colloids and Surfaces B: Biointerfaces | 2013
Steven S.-S. Wang; Ping Lun Hsieh; Pei Shan Chen; Yu Tien Chen; Jeng Shiung Jan
Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering.
ACS Applied Materials & Interfaces | 2012
Jeng Shiung Jan; Pei Shan Chen; Ping Lun Hsieh; Bo Yu Chen
A simple and versatile approach is proposed to use cross-linked polypeptide hydrogels as templates for silica mineralization, allowing the synthesis of polypeptide-silica hybrid hydrogels and mesoporous silica (meso-SiO(2)) by subsequent calcination. The experimental data revealed that the cross-linked polypeptide hydrogels comprised of interconnected, membranous network served as templates for the high-fidelity transcription of silica replicas spanning from nanoscale to microscale, resulting in hybrid network comprised of interpenetrated polypeptide nanodomains and silica. The mechanical properties of these as-prepared polypeptide-silica hybrid hydrogels were found to vary with polypeptide chain length and composition. The synergy between cross-link, hydrophobic interaction, and silica deposition can lead to the enhancement of their mechanical properties. The polypeptide-silica hybrid hydrogel with polypeptide and silica content as low as 1.1 wt% can achieve 114 kN/m(2) of compressive strength. By removing the polypeptide nanodomains, mesoporous silicas with average pore sizes ranged between 2 nm and 6 nm can be obtained, depending on polypeptide chain length and composition. The polypeptide-silica hybrid hydrogels demonstrated good cell compatibility and can support cell attachment/proliferation. With the versatility of polymer chemistry and feasibility of amine-catalyzed sol-gel chemistry, the present method is facile for the synthesis of green nanocomposites and biomaterials.
Biopolymers | 2012
Wen Sing Wen; Jun Kun Lai; Yu Jiun Lin; Chia Min Lai; Yun Chiao Huang; Steven S.-S. Wang; Jeng Shiung Jan
The fibrillation of hen egg-white lysozyme (HEWL) in the absence and presence of simple, unstructured D,L-lysine-co-glycine (D,L-Lys-co-gly) and D,L-lysine-co-L-phenylalanine (D,L-Lys-co-Phe) copolypeptides was studied by using a variety of analytical techniques. The attenuating and decelerating effects on fibrillation are significantly dependent on the polypeptide concentration and the composition ratios in the polypeptide chain. Interestingly, D,L-Lys-co-gly and D,L-Lys-co-Phe copolypeptides with the same composition ratio have comparable attenuating effects on fibrillation. The copolypeptide with highest molar fraction of glycine residue exhibits the strongest suppression of HEWL fibrillation. The copolypeptide has the highest hydrophobic interacting capacity due to the more molar ratio of apolar monomer in the polymer backbone. The major driving forces for the association of HEWL and copolypeptides are likely to be hydrogen bonding and hydrophobic interactions, and these interactions reduce the concentration of free protein in solution available to proceed to fibrillation, leading to the increase of lag time and attenuation of fibrillation. The results of this work may contribute to the understanding of the molecular factors affecting amyloid fibrillation and the molecular mechanism(s) of the interactions between the unstructured polypeptides and the amyloid proteins.
Colloids and Surfaces B: Biointerfaces | 2017
Su Chun How; Yu Fon Chen; Pin Lun Hsieh; Steven S.-S. Wang; Jeng Shiung Jan
A cell-targeted, reduction-/pH-responsive polyionic complex (PIC) nanogel system was developed by simply mixing cationic lactobionolatone/lipoic acid-modified poly(L-lysine) (PLL-g-(Lipo-Lac)) and anionic poly(acrylic acid) (PAA), followed by disulfide cross-linking. The nanogels with sizes smaller than 150nm can be prepared at certain mixing ratio via forming interchain disulfide cross-link and helical PAA/PLL complexes. In vitro drug release study showed that Doxorubicin (Dox) release from the nanogels was significantly enhanced by increasing acidity and/or introducing disulfide cleaving agent. Carbohydrate-lectin binding and cellular uptake studies confirmed that Lac-conjugated nanogels can effectively bind to the cells bearing asialoglycoprotein receptors and subsequently afford efficient cell internalization. Cytotoxicity assays showed that Dox-loaded, Lac-conjugated nanogels exhibited efficient cell proliferation inhibition toward HepG2 cells, whereas the nanogels exhibited excellent biocompatibility. Furthermore, TUNEL assay was employed to detect apoptosis pertaining to the mechanism of cell death. This study highlights that polyionic complexation with subsequent cross-linking can be a simple approach to prepare multifunctional nanogels as drug delivery vehicles.
Journal of Colloid and Interface Science | 2011
Jeng Shiung Jan; Po Jui Chen; Yu Han Ho
We report the bioassisted synthesis of gold nanoparticle/silica (Au NP/silica) tubes using layer-by-layer (LBL) assembled poly(L-lysine)/poly(L-tyrosine) (PLL/PLT) multilayer films deposited on the polycarbonate (PC) membrane pores as both mediating agents and templates. The novelty of this approach is the in situ synthesis of Au NP/silica tubes using PLL/PLT multilayer films for sequential growth of Au NPs and silicas. The experimental data revealed that the buildup of the LBL multilayer films was mainly driven by the formation of hydrogen bond and the polypeptide macromolecular assemblies adopted mainly β-sheet conformation. The as-prepared Au NP/silica tubes possessed promising catalytic activity toward the reduction of p-nitrophenol. The synthesis conditions such as the concentration of gold precursor and polypeptide molecular weight were found to influence the gold weight ratio and particle size in the tubes and the catalytic properties of the Au NP/silica tubes. This approach provides a facile, robust, and green method to obtain nonaggregated metal nanoparticles immobilized in porous oxide network at ambient conditions. Using the synergy between biomimetic or bioassisted synthesis of nanostructured materials and LbL assembly technique, a variety of structures such as films, tubes, and capsules comprising of multiple compositions can be obtained.