Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeng-Yu Lin is active.

Publication


Featured researches published by Jeng-Yu Lin.


ACS Applied Materials & Interfaces | 2013

Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors

Chao-Shuan Dai; Pei-Yi Chien; Jeng-Yu Lin; Shu-Wei Chou; Wen-Kai Wu; Ping-Hsuan Li; Kuan-Yi Wu; Tsung-Wu Lin

The Ni3S2 nanoparticles with the diameters ranging from 10 to 80 nm are grown on the backbone of conductive multiwalled carbon nanotubes (MWCNTs) using a glucose-assisted hydrothermal method. It is found that the Ni3S2 nanoparticles deposited on MWCNTs disassemble into smaller components after the composite electrode is activated by the consecutive cyclic voltammetry scan in a 2 M KOH solution. Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. Because the synergistic effect of the Ni3S2 nanoparticles and MWCNTs on the capacitive performance of the composite electrode is pronounced, the composite electrode shows a high specific capacitance of 800 F/g and great cycling stability at a current density of 3.2 A/g. To examine the capacitive performance of the composite electrode in a full-cell configuration, an asymmetric supercapacitor device was fabricated by using the composite of Ni3S2 and MWCNTs as the cathode and activated carbon as the anode. The fabricated device can be operated reversibly between 0 and 1.6 V, and obtain a high specific capacitance of 55.8 F/g at 1 A/g, which delivers a maximum energy density of 19.8 Wh/kg at a power density of 798 W/kg. Furthermore, the asymmetric supercapacitor shows great stability based on the fact that the device retains 90% of its initial capacitance after a consecutive 5000 cycles of galvanostatic charge-discharge performed at a current density of 4 A/g.


Journal of Materials Chemistry | 2012

Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells

Sheng-Yen Tai; Chia-Jui Liu; Shu-Wei Chou; Forest Shih-Sen Chien; Jeng-Yu Lin; Tsung-Wu Lin

In the current study, the nanocomposite of molybdenum disulfide and multi-walled carbon nanotubes (MWCNT@MoS2) was proposed for the first time as a counter electrode (CE) catalyst in dye-sensitized solar cells (DSSCs) to speed up the reduction of triiodide (I3−) to iodide (I−). This novel catalyst was synthesized by simply mixing MWCNTs and MoS2 in an acidic solution and then converting the solid intermediate into the MWCNT@MoS2 nanocomposite in a H2 flow at 650 °C. X-ray powder diffraction, Raman and X-ray photoemission spectroscopy confirmed the composition and the structure of the MWCNT@MoS2 nanocomposite. The microstructure details of the nanocomposite were studied by transmission electron microscopy, showing that only a few-layers of the MoS2 nanosheets were formed on the MWCNT surface. This unique structure is beneficial to the improvement of the catalytic activity of MWCNT@MoS2 towards the reduction of I3−. The extensive cyclic voltammograms (CV) showed that the cathodic current density of the MWCNT@MoS2 CE was higher than those of MoS2, MWCNT and sputtered Pt CEs due to the increased active surface area of the former. Moreover, the peak current densities of the MWCNT@MoS2 CE showed no sign of degradation after consecutive 100 CV tests, suggesting the great electrochemical stability of the MWCNT@MoS2 CE. Furthermore, the MWCNT@MoS2 CE demonstrated an impressive low charge-transfer resistance (1.69 Ω cm2) for I3− reduction. Finally, the DSSC assembled with the MWCNT@MoS2 CE showed a high power conversion efficiency of 6.45%, which is comparable to the DSSC with Pt CE (6.41%).


Journal of Materials Chemistry | 2012

Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells

Chia-Jui Liu; Sheng-Yen Tai; Shu-Wei Chou; Ya-Chu Yu; Kai-Di Chang; Shuei Wang; Forest Shih-Sen Chien; Jeng-Yu Lin; Tsung-Wu Lin

In the current study, a nanocomposite of molybdenum disulfide and graphene (MoS2/RGO) was proposed for the first time as the counter electrode (CE) catalyst in dye-sensitized solar cells (DSSCs) to speed up the reduction of triiodide (I3−) to iodide (I−). This novel catalyst was synthesized by simply mixing graphene oxide nanosheets with a solution of ammonium tetrathiomolybdate and then converting the solid intermediate into MoS2/RGO nanocomposite in a H2 flow at 650 °C. Atomic force microscopy, X-ray powder diffraction and X-ray photoemission spectroscopy confirmed that MoS2 nanoparticles were deposited onto the graphene surface. The extensive cyclic voltammograms (CV) showed that the cathodic current density of the MoS2/RGO CE was higher than those of MoS2, RGO and sputtered Pt CEs, due to the increased active surface area of the former. Moreover, the peak current densities of the MoS2/RGO CE showed no sign of degradation after 100 consecutive CV tests, suggesting the great electrochemical stability of the MoS2/RGO CE. Furthermore, the MoS2/RGO CE demonstrated an impressively low charge-transfer resistance (0.57 Ω cm2) for I3− reduction. Finally, the DSSC assembled with the MoS2/RGO CE showed a high power conversion efficiency of 6.04%, which is comparable to the DSSC with a Pt CE (6.38%).


Journal of Materials Chemistry | 2012

Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells

Yaoming Xiao; Jeng-Yu Lin; Sheng-Yen Tai; Shu-Wei Chou; Gentian Yue; Jihuai Wu

High performance poly(3,4-ethylenedioxythiophene) (PEDOT) nano-meadows were electropolymerized onto multi-wall carbon nanotube (MWCNT) as counter electrodes (CEs) for Pt-free dye-sensitized solar cells (DSCs) for the first time. This composite film was fabricated using an electrophoresis of MWCNTs onto a fluorinated tin oxide glass substrate and then subjected to PEDOT electropolymerization by using the pulse potentiostatic method. The surface of MWCNTs was wrapped with nano-meadows PEDOT thin film of ∼55 nm in thickness. The extensive cyclic voltammograms (CV) showed PEDOT/MWCNT CE with excellent electrocatalytic activity for I3− reduction. Moreover, the peak current densities of the PEDOT/MWCNT CE showed no sign of degradation after consecutive 200 CV tests, suggesting the great electrochemical stability of the PEDOT/MWCNT CE. The electrochemical impedance spectroscopy demonstrated that the PEDOT/MWCNT CE had the lowest charge-transfer resistance among all CEs tested in this study. The DSC assembled with the PEDOT/MWCNT composite CE demonstrated an enhanced photovoltaic conversion efficiency of 7.03% compared to that using conventional Pt CE (5.88%) under full sunlight illumination (100 mW cm−2, AM1.5 G) due to the intrinsic superior electrocatalytic activity of the nano-meadows PEDOT material, highly specific surface area and high electrical conductivity of the MWCNTs. Therefore, the PEDOT/MWCNT CE can be considered as a promising alternative CE for use in Pt-free DSCs.


Journal of Materials Chemistry | 2013

High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells

Gentian Yue; Jihuai Wu; Yaoming Xiao; Miaoliang Huang; Jianming Lin; Jeng-Yu Lin

A high porous molybdenum sulfide–carbon (MoS2–C) hybrid film was prepared by using an in situ hydrothermal route. The MoS2–C hybrid film served as a low-cost and high efficient platinum-free counter electrode for a dye-sensitized solar cell (DSSC). The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel curve analysis indicate that the MoS2–C electrode possesses low charge transfer resistance on the electrolyte–electrode interface, high electrocatalytic activity and fast reaction kinetics for the reduction of triiodide to iodide at the counter electrode, which is due to large specific surface area and special structure and compositions of MoS2–C film. A DSSC with the novel MoS2–C counter electrode achieve a high power conversion efficiency of 7.69% under standard light illumination, which exceeds that of the DSSC with a Pt counter electrode (6.74%).


Journal of Materials Chemistry | 2013

Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell

Yaoming Xiao; Jihuai Wu; Jeng-Yu Lin; Sheng-Yen Tai; Gentian Yue

Because of the large specific surface area and superior electrical conductivity of multi-wall carbon nanotubes (MWCNTs) and the high electrocatalytic activity of cobalt sulfide (CoS), CoS/MWCNT hybrid films are deposited onto Ti foil substrates by sequential electrophoresis and pulse potentiostatic electrodeposition. Field-emission scanning electron microscopy observes that the surface of the MWCNTs is wrapped with a nano-honeycomb CoS thin film of ∼55 nm in thickness. Cyclic voltammograms, electrochemical impedance spectroscopy, and Tafel polarization characterization indicate that the CoS/MWCNT/Ti counter electrode (CE) has better electrocatalytic activity for I3− reduction than Pt CE. Under full sunlight illumination (100 mW cm−2, AM 1.5 G), the dye-sensitized solar cell based on the CoS/MWCNT/Ti CE achieves a power conversion efficiency of 8.05%, which exceeds that of the device based on Pt/Ti CE (6.39%).


RSC Advances | 2013

Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors

Jeng-Yu Lin; Shu-Wei Chou

In this study, an interlaced nanosheet-like cobalt sulfide (CoS) electroactive material was deposited on a Ni foam substrate using a facile and efficient electrochemical route and employed as a high-performance supercapacitor for the first time. An impressive specific capacitance, as high as 1471 F g−1 at 4 A g−1, was achieved for the interlaced nanosheet-like CoS electroactive material in 1.0 M KOH aqueous electrolyte. It delivered a remarkable specific capacitance of up to 1306 F g−1 even at a high charge–discharge current density of 40 A g−1, indicating its excellent energy storage at high rates. Moreover, nearly 100% retention of specific capacitance and >99% Coulombic efficiency were achieved even after consecutive 1000 cycles with a fairly high current density of 8 A g−1.


Journal of Materials Chemistry | 2013

A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells

Yaoming Xiao; Jihuai Wu; Jeng-Yu Lin; Gentian Yue; Jianming Lin; Miaoliang Huang; Yunfang Huang; Zhang Lan; Leqing Fan

Multi-wall carbon nanotubes (MWCNTs) were deposited on a titanium (Ti) foil substrate by using electrophoresis, then a nano-corallines nickel sulfide (NiS) was deposited on the MWCNTs by using a pulse potentiostatic method. The high performance NiS/MWCNT/Ti hybrid film was firstly used as a Pt-free counter electrode (CE) in dye-sensitized solar cells (DSSCs). The surface of MWCNTs was wrapped with a nano-corallines NiS thin film of ∼45 nm in thickness. Under full sunlight illumination (100 mW cm−2, AM 1.5 G), DSSCs with a NiS/MWCNT/Ti CE achieved an enhanced photovoltaic conversion efficiency of 7.90%, while DSSCs with a Pt/Ti CE obtained the efficiency of 6.36%. The characterization of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that nano-corallines NiS had high electrocatalytic activity for I3− reduction, MWCNTs had high specific surface area and low resistance, and the synergistic effect of NiS and MWCNTs endowed the superior features of the hybrid film. Therefore, the NiS/MWCNT/Ti CE can be used as a promising alternative CE in low-cost and large-scale DSSCs.


ACS Applied Materials & Interfaces | 2012

Glucose aided preparation of tungsten sulfide/multi-wall carbon nanotube hybrid and use as counter electrode in dye-sensitized solar cells.

Jihuai Wu; Gentian Yue; Yaoming Xiao; Miaoliang Huang; Jianming Lin; Leqing Fan; Zhang Lan; Jeng-Yu Lin

The tungsten sulfide/multi-wall carbon nanotube (WS(2)/MWCNT) hybrid was prepared in the presence of glucose by the hydrothermal route. The hybrid materials were used as counter electrode in the dye-sensitized solar cell (DSSC). The results of cyclic voltammetry measurement and electrochemical impedance spectroscopy indicated that the glucose aided prepared (G-A) WS(2)/MWCNT electrode had low charge-transfer resistance (R(ct)) and high electrocatalytic activity for triiodide reduction. The excellent electrochemical properties for (G-A) WS(2)/MWCNT electrode is due to the synergistic effects of WS(2) and MWCNTs, as well as amorphous carbon introduced by glucose. The DSSC based on the G-A WS(2)/MWCNT counter electrode achieved a high power conversion efficiency of 7.36%, which is comparable with the performance of the DSSC using Pt counter electrode (7.54%).


ACS Applied Materials & Interfaces | 2014

Ni3S2/Ni-P bilayer coated on polyimide as a Pt- and TCO-free flexible counter electrode for dye-sensitized solar cells.

Jeng-Yu Lin; Wei-Yan Wang; Yi-Ting Lin; Shu-Wei Chou

In this study, we reported an efficient, flexible, and low-cost (Pt-free and transparent conducting oxide (TCO)-free) counter electrode (CE) made of a polyimide (PI) substrate coated with a Ni3S2/Ni-P bilayer for dye-sensitized solar cells (DSCs). The bilayer Ni3S2/Ni-P hybrid film was deposited on a PI plastic substrate via a series of wet chemical/electrochemical processes. The bottom Ni-P layer was deposited on a PI to replace conventional TCO as a conductive layer, and the top Ni3S2 layer was employed as the electrocatalyst for I3(-) reduction. On the basis of the extensive electrochemical measurments, the as-prepared Ni3S2/Ni-P coated PI flexible CE demonstrated a Pt-like electrocatalytic for I3(-) reduction. As a result, the DSC assembled with the Ni3S2/Ni-P coated PI flexible CE exhibited an impressive photovoltaic conversion efficiency of 6.28% accompanied by a fill factor of 0.63 under 1 sun illumination (100 mW cm(-2), AM 1.5), which is comparative to that of the DSC based on the Pt coated indium tin oxide/polyethylene naphthalate (ITO/PEN) CE.

Collaboration


Dive into the Jeng-Yu Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi-Chao Wan

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tzu-Chien Wei

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Yung-Yun Wang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge