Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenni Küblbeck is active.

Publication


Featured researches published by Jenni Küblbeck.


Toxicology | 2012

Characterization of human cytochrome P450 induction by pesticides.

Khaled Abass; Virpi Lämsä; Petri Reponen; Jenni Küblbeck; Paavo Honkakoski; Sampo Mattila; Olavi Pelkonen; Jukka Hakkola

Pesticides are a large group of structurally diverse toxic chemicals. The toxicity may be modified by cytochrome P450 (CYP) enzyme activity. In the current study, we have investigated effects and mechanisms of 24 structurally varying pesticides on human CYP expression. Many pesticides were found to efficiently activate human pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Out of the 24 compounds tested, 14 increased PXR- and 15 CAR-mediated luciferase activities at least 2-fold. While PXR was predominantly activated by pyrethroids, CAR was, in addition to pyrethroids, well activated by organophosphates and several carbamates. Induction of CYP mRNAs and catalytic activities was studied in the metabolically competent, human derived HepaRG cell line. CYP3A4 mRNA was induced most powerfully by pyrethroids; 50 μM cypermethrin increased CYP3A4 mRNA 35-fold. CYP2B6 was induced fairly equally by organophosphate, carbamate and pyrethroid compounds. Induction of CYP3A4 and CYP2B6 by these compound classes paralleled their effects on PXR and CAR. The urea herbicide diuron and the triazine herbicide atrazine induced CYP2B6 mRNA more than 10-fold, but did not activate CAR indicating that some pesticides may induce CYP2B6 via CAR-independent mechanisms. CYP catalyzed activities were induced much less than the corresponding mRNAs. At least in some cases, this is probably due to significant inhibition of CYP enzymes by the studied pesticides. Compared with human CAR activation and CYP2B6 expression, pesticides had much less effect on mouse CAR and CYP2B10 mRNA. Altogether, pesticides were found to be powerful human CYP inducers acting through both PXR and CAR.


Biomaterials | 2012

Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system.

Liang Ma; Jeremy Barker; Changchun Zhou; Wei Li; Jing Zhang; Biaoyang Lin; Gregory Foltz; Jenni Küblbeck; Paavo Honkakoski

A three-dimensional micro-scale perfusion-based two-chamber (3D-μPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs in conjunction with liver metabolism. Liver cells with different cytochrome P450 (CYP) subtypes and glioblastoma multiforme (GBM) brain cancer cells were cultured in two separate chambers connected in tandem. Both chambers contained a 3D tissue engineering scaffold fabricated with biodegradable poly(lactic acid) (PLA) using a solvent-free approach. We used this model system to test the cytotoxicity of anticancer drugs, including temozolomide (TMZ) and ifosfamide (IFO). With the liver cells, TMZ showed a much lower toxicity to GBM cells under both 2D and 3D cell culture conditions. Comparing 2D, GBM cells cultured in 3D had much high viability under TMZ treatment. IFO was used to test the CYP-related metabolic effects. Cells with different expression levels of CYP3A4 differed dramatically in their ability to activate IFO, which led to strong metabolism-dependent cytotoxicity to GBM cells. These results demonstrate that our 3D-μPTC system could provide a more physiologically realistic in vitro environment than the current 2D monolayers for testing metabolism-dependent toxicity of anticancer drugs. It could therefore be used as an important platform for better prediction of drug dosing and schedule towards personalized medicine.


Biochemical Pharmacology | 2008

Discovery of substituted sulfonamides and thiazolidin-4-one derivatives as agonists of human constitutive androstane receptor.

Jenni Küblbeck; Johanna Jyrkkärinne; Antti Poso; Miia Turpeinen; Wolfgang Sippl; Paavo Honkakoski; Björn Windshügel

The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor responsible for the recognition of potentially toxic endo- and exogenous compounds whose elimination from the body is accelerated by the CAR-mediated inducible expression of metabolizing enzymes and transporters. Despite the importance of CAR, few human agonists are known so far. Following a sequential virtual screening procedure using a 3D pharmacophore and molecular docking approach, we identified 17 novel agonists that could activate human CAR in vitro and enhance its association with the nuclear receptor co-activator SRC1. Selected agonists also increased the expression of the human CAR target CYP2B6 mRNA in primary hepatocytes. Composed of substituted sulfonamides and thiazolidin-4-one derivatives, these agonists represent two novel chemotypes capable of human CAR activation, thus broadening the agonist spectrum of CAR.


Journal of Medicinal Chemistry | 2008

Insights into ligand-elicited activation of human constitutive androstane receptor based on novel agonists and three-dimensional quantitative structure-activity relationship.

Johanna Jyrkkärinne; Björn Windshügel; Toni Rönkkö; Anu J. Tervo; Jenni Küblbeck; Maija Lahtela-Kakkonen; Wolfgang Sippl; Antti Poso; Paavo Honkakoski

The human constitutive androstane receptor (CAR, NR1I3) is an important regulator of xenobiotic metabolism and other physiological processes. So far, only few CAR agonists are known and no explicit mechanism has been proposed for their action. Thus, we aimed to generate a 3D QSAR model that could explain the molecular determinants of CAR agonist action. To obtain a sufficient number of agonists that cover a wide range of activity, we applied a virtual screening approach using both structure- and ligand-based methods. We identified 27 novel human CAR agonists on which a 3D QSAR model was generated. The model, complemented by coregulator recruitment and mutagenesis results, suggests a potential activation mechanism for human CAR and may serve to predict potential activation of CAR for compounds emerging from drug development projects or for chemicals undergoing toxicological risk assessment.


Molecular Pharmaceutics | 2011

New in Vitro Tools to Study Human Constitutive Androstane Receptor (CAR) Biology: Discovery and Comparison of Human CAR Inverse Agonists

Jenni Küblbeck; Johanna Jyrkkärinne; Ferdinand Molnár; Tiina Kuningas; Jayendra Z. Patel; Björn Windshügel; Tapio Nevalainen; Tuomo Laitinen; Wolfgang Sippl; Antti Poso; Paavo Honkakoski

The human constitutive androstane receptor (CAR, NR1I3) is one of the key regulators of xenobiotic and endobiotic metabolism. The unique properties of human CAR, such as the high constitutive activity and the complexity of signaling, as well as the lack of functional and predictive cell-based assays to study the properties of the receptor, have hindered the discovery of selective human CAR ligands. Here we report a novel human CAR inverse agonist, 1-[(2-methylbenzofuran-3-yl)methyl]-3-(thiophen-2-ylmethyl) urea (S07662), which suppresses human CAR activity, recruits the corepressor NCoR in cell-based assays, and attenuates the phenytoin- and 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO)-induced expression of CYP2B6 mRNA in human primary hepatocytes. The properties of S07662 are also compared with those of known human CAR inverse agonists by using an array of different in vitro and in silico assays. The identified compound S07662 can be used as a chemical tool to study the biological functions of human CAR and also as a starting point for the development of new drugs for various conditions involving the receptor.


Drug metabolism and drug interactions | 2013

An update on the constitutive androstane receptor (CAR)

Ferdinand Molnár; Jenni Küblbeck; Johanna Jyrkkärinne; Viktoria Prantner; Paavo Honkakoski

Abstract The constitutive androstane receptor (CAR; NR1I3) has emerged as one of the main drug- and xenobiotic-sensitive transcriptional regulators. It has a major effect on the expression of several oxidative and conjugative enzymes and transporters, and hence, CAR can contribute to drug/drug interactions. Novel functions for CAR are also emerging: it is able to modulate the metabolic fate of glucose, lipids, and bile acids, and it is also involved in cell-cell communication, regulation of the cell cycle, and chemical carcinogenesis. Here, we will review the recent information available on CAR and its target gene expression, its interactions with partner proteins and mechanisms of action, interindividual and species variation, and current advances in CAR ligand selectivity and methods used in interrogation of its ligands.


Journal of Chemical Information and Modeling | 2012

Molecular Dynamics Simulations for Human CAR Inverse Agonists

Johanna Jyrkkärinne; Jenni Küblbeck; Juha T. Pulkkinen; Paavo Honkakoski; Reino Laatikainen; Antti Poso; Tuomo Laitinen

Constitutive androstane receptor (CAR), along with pregnane x receptor (PXR), is an important metabolic sensor in the hepatocytes. Like all other nuclear receptors (NRs), CAR works in concert with coregulator proteins, coactivators, and corepressors which bind to the NRs. The main basis for the receptor to distinguish between coactivators and corepressors is the position of the C-terminal helix 12 (H12), which is determined by the bound NR ligand. CAR, having constitutive activity, can be repressed or further activated by its ligands. Crystal structure of human CAR bound to an agonist and a coactivator peptide is available, but no structural information on an inverse agonist-bound human CAR and a corepressor exists. In our previous molecular dynamics (MD) studies, no corepressor peptide was included. Therefore, probably due to the strong interactions which keep the relatively short H12 of CAR in the active position, the structural changes elicited by inverse agonists were very subtle, and H12 of CAR seemed to more or less retain its active conformation. Here, we have run a series of MD simulations to study the movement of H12 in the presence of both activating and repressing ligands as well as a corepressor peptide. The presence of the corepressor on the coregulator surface of CAR induced a clear shift of H12 of the inverse agonists-bound CAR. In general, H12 moved toward H10 and not away from the ligand binding domain, as seen in some other NRs. However, H12 of CAR is short enough that this movement seems to be adequate to accommodate the binding of the corepressor.


Journal of Pharmaceutical Sciences | 2016

Genetically Modified Caco-2 Cells With Improved Cytochrome P450 Metabolic Capacity

Jenni Küblbeck; Jenni J. Hakkarainen; Aleksanteri Petsalo; Kati-Sisko Vellonen; Ari Tolonen; Petri Reponen; Markus M. Forsberg; Paavo Honkakoski

The human intestinal Caco-2 cell line has been extensively used as a model of small intestinal absorption but it lacks expression and function of cytochrome P450 enzymes, particularly CYP3A4 and CYP2C9, which are normally expressed in the intestinal epithelium. In order to increase the expression and activity of CYP isozymes in these cells, we created 2 novel Caco-2 sublines expressing chimeric constitutive androstane or pregnane X receptors and characterized these cells for their metabolic and absorption properties. In spite of elevated mRNA expression of transporters and differentiation markers, the permeation properties of the modified cell lines did not significantly differ from those of the wild-type cells. In contrast, the metabolic activity was increased beyond the currently used models. Specifically, CYP3A4 activity was increased up to 20-fold as compared to vitamin D treated wild-type Caco-2 cells.


Toxicology in Vitro | 2013

Interactions of sesquiterpenes zederone and germacrone with the human cytochrome P450 system.

Prapapan Pimkaew; Jenni Küblbeck; Aleksanteri Petsalo; Jouni Jukka; Apichart Suksamrarn; Risto O. Juvonen; Seppo Auriola; Pawinee Piyachaturawat; Paavo Honkakoski

Misclassification of Curcuma species (family Zingiberaceae) may lead to unwanted human exposure to Curcuma elata sesquiterpenes zederone and germacrone which have caused hepatotoxicity and changes in CYP expression in laboratory animals. We investigated how these compounds interact with the human cytochrome P450 (CYP) system, in order to evaluate their potential for human liver toxicity and herb-drug interactions. We found that both sesquiterpenes (1-30 μM) greatly induced expression of CYP2B6 and CYP3A4 but not CYP1A2 mRNAs in human primary hepatocytes (HPHs). This induction profile correlated with activation of constitutive androstane and pregnane X receptors. Cytotoxicity was also observed in exposed HPHs. CYP inhibition studies with pooled human liver microsomes (HLMs) indicated that zederone and germacrone moderately inhibited CYP2B6 and CYP3A4 activities in vitro, with IC50 values below 10 μM. When zederone was incubated with HLMs and NADPH, one di-epoxide metabolite was formed and by using glutathione trapping, five epoxide-derived conjugates were detected. Germacrone produced two oxidized metabolites and four glutathione conjugates. The results suggest that enzymes in HLMs convert sesquiterpenes into reactive, electrophilic compounds which may be causative for the reported liver injuries. These findings provide insight on the safety and drug-herb interactions of the Curcuma species.


Xenobiotica | 2016

Characterization of ligand-dependent activation of bovine and pig constitutive androstane (CAR) and pregnane X receptors (PXR) with interspecies comparisons.

Jenni Küblbeck; Vanessa Zancanella; Viktoria Prantner; Ferdinand Molnár; E. James Squires; Mauro Dacasto; Paavo Honkakoski; Mery Giantin

Abstract 1. Nuclear receptors CAR (NR1I3) and PXR (NR1I2) are major ligand-activated transcriptional regulators of xenobiotic metabolism and disposition and modulators of endobiotic metabolism. Differences in xenobiotic selectivity between the human and rodent receptors are well recognized but there is lack of such information on properties of CAR and PXR in important domestic animals. 2. The pig and bovine receptors were cloned and their ligand profiles were systematically compared to corresponding human and mouse forms utilizing a panel of xenobiotics and structural analysis. 3. Pig CAR and PXR resemble their human counterparts which can be rationalized by only modest amino acid changes between critical residues of the human ligand-binding pockets (H203Q for CAR, L210V and M243I for PXR). 4. In contrast, bovine CAR shows a blunted response to CAR agonists and inverse agonists. These changes are likely due to disruptive mutations at or near critical hydrogen bond-forming residues (N165I, Y326F). The unresponsiveness of bovine PXR to human- and mouse-selective agonists may be related to substitutions at important ligand-contacting residues R410Q and F305V, respectively. 5. Our findings have implications for regulation of drug-metabolizing enzymes and transporters and pharmacokinetics in cattle and pigs.

Collaboration


Dive into the Jenni Küblbeck's collaboration.

Top Co-Authors

Avatar

Paavo Honkakoski

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ferdinand Molnár

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Johanna Jyrkkärinne

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Aleksanteri Petsalo

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Antti Poso

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Viktoria Prantner

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Juha T. Pulkkinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tuomo Laitinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge