Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennie L. Thomas is active.

Publication


Featured researches published by Jennie L. Thomas.


Bulletin of the American Meteorological Society | 2014

Arctic Air Pollution: New Insights from POLARCAT-IPY

Katharine S. Law; Andreas Stohl; Patricia K. Quinn; C. A. Brock; J. F. Burkhart; Jean-Daniel Paris; Gérard Ancellet; Hanwant B. Singh; Anke Roiger; Hans Schlager; Jack E. Dibb; Daniel J. Jacob; S. R. Arnold; Jacques Pelon; Jennie L. Thomas

Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at midlatitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate–chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quant...


Atmospheric Chemistry and Physics | 2014

Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations

S. R. Arnold; Louisa Kent Emmons; S. A. Monks; Kathy S. Law; David A. Ridley; Solène Turquety; Simone Tilmes; Jennie L. Thomas; Johannes Flemming; V. Huijnen; Jingqiu Mao; Bryan N. Duncan; Stephen D. Steenrod; Y. Yoshida; Joakim Langner; Y. Long

Abstract. We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (> 50° N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multi-model comparison exercise. In model air masses dominated by fire emissions, ΔO3/ΔCO values ranged between 0.039 and 0.196 ppbv ppbv−1 (mean: 0.113 ppbv ppbv−1) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppbv−1 (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model ΔPAN/ΔCO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger ΔPAN/ΔCO values (4.47 to 7.00 pptv ppbv−1) than GEOS5-forced models (1.87 to 3.28 pptv ppbv−1), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.


Bulletin of the American Meteorological Society | 2015

Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The ACCESS Aircraft Campaign Experiment

Anke Roiger; Jennie L. Thomas; Hans Schlager; Kathy S. Law; J. Kim; Andreas Schäfler; Bernadett Weinzierl; F. Dahlkötter; I. Krisch; Louis Marelle; Andreas Minikin; Jean-Christophe Raut; Anja Reiter; Maximilian Rose; Monika Scheibe; Paul Stock; Robert Baumann; Cathy Clerbaux; Maya George; Tatsuo Onishi; Johannes Flemming

AbstractArctic sea ice has decreased dramatically in the past few decades and the Arctic is increasingly open to transit shipping and natural resource extraction. However, large knowledge gaps exist regarding composition and impacts of emissions associated with these activities. Arctic hydrocarbon extraction is currently under development owing to the large oil and gas reserves in the region. Transit shipping through the Arctic as an alternative to the traditional shipping routes is currently underway. These activities are expected to increase emissions of air pollutants and climate forcers (e.g., aerosols, ozone) in the Arctic troposphere significantly in the future. The authors present the first measurements of these activities off the coast of Norway taken in summer 2012 as part of the European Arctic Climate Change, Economy, and Society (ACCESS) project. The objectives include quantifying the impact that anthropogenic activities will have on regional air pollution and understanding the connections to ...


Proceedings of the National Academy of Sciences of the United States of America | 2017

Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

Emma L. Mungall; Jonathan P. D. Abbatt; Jeremy J. B. Wentzell; Alex K. Y. Lee; Jennie L. Thomas; Marjolaine Blais; Michel Gosselin; Lisa A. Miller; Tim Papakyriakou; Megan D. Willis; John Liggio

Significance A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated volatile organic compounds than can be accounted for by known sources. Although it was observed in the summertime Arctic, this connection may be widespread and important to our understanding of secondary organic aerosol in other remote marine environments, with implications for our understanding of global climate. Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.


Geophysical Research Letters | 2017

Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

Jennie L. Thomas; Chris Polashenski; Amber Jeanine Soja; Louis Marelle; Kimberley Casey; Hyun Deok Choi; Jean-Christophe Raut; Christine Wiedinmyer; Louisa Kent Emmons; Jerome D. Fast; Jacques Pelon; Kathy S. Law; Mark G. Flanner; Jack E. Dibb

Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.


Journal of Geophysical Research | 2016

Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport

Dorothy L. Fibiger; Jack E. Dibb; Dexian Chen; Jennie L. Thomas; J. F. Burkhart; L. Gregory Huey; Meredith G. Hastings

As a major sink of atmospheric nitrogen oxides (NOx = NO + NO2), nitrate (NO3-) in polar snow can reflect the long-range transport of NOx and related species (e.g., PAN). On the other hand, because NO3- in snow can be photolyzed, potentially producing gas-phase NOx locally, NO3- in snow (and thus, ice) may reflect local processes. Here we investigate the relationship between local atmospheric composition at Summit, Greenland (72°35’N, 38°25’W) and the isotopic composition of NO3- to determine the degree to which local processes influence atmospheric and snow NO3-. Based on snow and atmospheric observations during May-June 2010 and 2011, we find no connection between the local atmospheric concentrations of a suite of gases (BrO, NO, NOy, HNO3 and nitrite (NO2-)) and the NO3- isotopic composition or concentration in snow. This suggests that 1) the snow NO3- at Summit is primarily derived from long-range transport and 2) this NO3- is largely preserved in the snow. Additionally, three isotopically distinct NO3- sources were found to be contributing to the NO3- in the snow at Summit during both 2010 and 2011. Through the complete isotopic composition of NO3-, we suggest that these sources are local anthropogenic particulate NO3- from station activities (δ15N = 16‰, Δ17O = 4‰ and δ18O = 23‰), NO3- formed from mid-latitude NOx (δ15N = -10‰, Δ17O = 29‰, δ18O = 78‰) and a NO3- source that is possibly influenced or derived from stratospheric ozone NO3- (δ15N = 5‰, Δ17O = 39‰, δ18O = 100‰).


Geophysical Research Letters | 2017

Evidence for marine biogenic influence on summertime Arctic aerosol

Megan D. Willis; Franziska Köllner; Julia Burkart; Heiko Bozem; Jennie L. Thomas; Johannes Schneider; Amir A. Aliabadi; P. Hoor; Hannes Schulz; Andreas Herber; W. Richard Leaitch; Jonathan P. D. Abbatt

We present vertically-resolved observations of aerosol composition during pristine summertime Arctic background conditions. The methansulfonic acid (MSA)-to-sulfate ratio peaked near the surface (mean 0.10), indicating a contribution from ocean-derived biogenic sulfur. Similarly, the organic aerosol (OA)-to-sulfate ratio increased towards the surface (mean 2.0). Both MSA-to-sulfate and OA-to-sulfate ratios were significantly correlated with FLEXPART-WRF-predicted airmass residence time over open water, indicating marine influenced OA. External mixing of sea salt aerosol from a larger number fraction of organic, sulfate and amine-containing particles, together with low wind speeds (median 4.7 m s−1), suggests a role for secondary organic aerosol formation. Cloud condensation nuclei concentrations were nearly constant (∼120 cm−3) when the OA fraction was <60% and increased to 350 cm−3 when the organic fraction was larger and residence times over open water were longer. Our observations illustrate the importance of marine-influenced OA under Arctic background conditions, which are likely to change as the Arctic transitions to larger areas of open water.


AMBIO: A Journal of the Human Environment | 2017

Local Arctic air pollution: Sources and impacts

Kathy S. Law; Anke Roiger; Jennie L. Thomas; Louis Marelle; Jean-Christophe Raut; Stig B. Dalsøren; Jan S. Fuglestvedt; Paolo Tuccella; Bernadett Weinzierl; Hans Schlager

Local emissions of Arctic air pollutants and their impacts on climate, ecosystems and health are poorly understood. Future increases due to Arctic warming or economic drivers may put additional pressures on the fragile Arctic environment already affected by mid-latitude air pollution. Aircraft data were collected, for the first time, downwind of shipping and petroleum extraction facilities in the European Arctic. Data analysis reveals discrepancies compared to commonly used emission inventories, highlighting missing emissions (e.g. drilling rigs) and the intermittent nature of certain emissions (e.g. flaring, shipping). Present-day shipping/petroleum extraction emissions already appear to be impacting pollutant (ozone, aerosols) levels along the Norwegian coast and are estimated to cool and warm the Arctic climate, respectively. Future increases in shipping may lead to short-term (long-term) warming (cooling) due to reduced sulphur (CO2) emissions, and be detrimental to regional air quality (ozone). Further quantification of local Arctic emission impacts is needed.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion

Joseph R. McConnell; Andrea Burke; Nelia W. Dunbar; Peter Köhler; Jennie L. Thomas; Monica Arienzo; Nathan Chellman; Olivia J. Maselli; Michael Sigl; Jess F. Adkins; Daniel Baggenstos; J. F. Burkhart; Edward J. Brook; Christo Buizert; Jihong Cole-Dai; T. J. Fudge; Gregor Knorr; Hans-F. Graf; Mackenzie M. Grieman; Nels Iverson; Kenneth C. McGwire; Robert Mulvaney; Guillaume Paris; Rachael H. Rhodes; Eric S. Saltzman; Jeffrey P. Severinghaus; Jørgen Peder Steffensen; Kendrick C. Taylor; Gisela Winckler

Significance Cold and dry glacial-state climate conditions persisted in the Southern Hemisphere until approximately 17.7 ka, when paleoclimate records show a largely unexplained sharp, nearly synchronous acceleration in deglaciation. Detailed measurements in Antarctic ice cores document exactly at that time a unique, ∼192-y series of massive halogen-rich volcanic eruptions geochemically attributed to Mount Takahe in West Antarctica. Rather than a coincidence, we postulate that halogen-catalyzed stratospheric ozone depletion over Antarctica triggered large-scale atmospheric circulation and hydroclimate changes similar to the modern Antarctic ozone hole, explaining the synchronicity and abruptness of accelerated Southern Hemisphere deglaciation. Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.


Journal of Geophysical Research | 2018

Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow

Jamie Lynn Ward; Mark G. Flanner; Michael H. Bergin; Jack E. Dibb; Chris Polashenski; Amber Jeanine Soja; Jennie L. Thomas

Combustion of biomass material results in the emission of microscopic particles, some of which absorb incoming solar radiation. Including black carbon (BC), these absorbing species can affect regional climate through changes in the local column energy budgets, cloud direct and indirect effects, and atmospheric dynamical processes. The cryosphere, which consists of both snow and ice, is unusually susceptible to changes in radiation due to its characteristically high albedo. As the largest element of the cryosphere in the Northern Hemisphere, the Greenland Ice Sheet (GrIS) covers most of Greenland’s terrestrial surface and, if subjected to the increased presence of light-absorbing impurities, could experience enhanced melt. A particularly enhanced melt episode of the GrIS occurred during July 2012; at the same time, large-scale biomass burning events were observed in Eurasia and North America. Observations showed that, at the same time, single-scattering albedo (SSA) was lower than average while aerosol optical depth (AOD) was high for the Greenland region. In this study, we apply idealized climate simulations to analyze how various aspects of Greenland’s climate are affected by the enhanced presence of particulate matter in the atmospheric and on the surface of the GrIS. We employ the Community Earth System Model (CESM) with prescribed sea surface temperatures and active land and atmospheric components. Using four sets of modeling experiments, we perturb 1) only AOD, 2) only SSA, 3) mass mixing ratios of BC and dust in snow, and 4) both AOD and in-snow impurity concentrations. The chosen values for each of these modeling experiments are based on field measurements taken in 2011 (AOD, SSA) and the summers of 2012-2014 (mass mixing ratios of BC and dust). Comparing the results of these experiments provides information on how the overall climate of Greenland could be affected by large biomass burning events.

Collaboration


Dive into the Jennie L. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Roiger

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge