Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathy S. Law is active.

Publication


Featured researches published by Kathy S. Law.


Journal of Geophysical Research | 1998

Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview

Alain Marenco; V. Thouret; Philippe Nédélec; H. G. J. Smit; M. Helten; Dieter Kley; Fernand Karcher; Pascal Simon; Kathy S. Law; J. A. Pyle; Georg Poschmann; Rainer Von Wrede; Chris Hume; Timothy A. Cook

Tentative estimates, using three-dimensional chemistry and transport models, have suggested small ozone increases in the upper troposphere resulting from current aircraft emissions, but have also concluded to significant deficiencies in todays models and to the need to improve them through comparison with extended data sets. The Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program was initiated in 1993 by European scientists, aircraft manufacturers, and airlines to collect experimental data. Its goal is to help understand the atmosphere and how it is changing under the influence of human activity, with particular interest in the effects of aircraft. MOZAIC consists of automatic and regular measurements of ozone and water vapor by five long range passenger airliners flying all over the world. The aim is not to detect direct effects of aircraft emissions on the ozone budget inside the air traffic corridors but to build a large database of measurements to allow studies of chemical and physical processes in the atmosphere, and hence to validate global chemistry transport models. MOZAIC data provide, in particular, detailed ozone and water vapor climatologies at 9–12 km where subsonic aircraft emit most of their exhaust and which is a very critical domain (e.g., radiatively and stratosphere/troposphere exchanges) still imperfectly described in existing models. This will be valuable to improve knowledge about the processes occuring in the upper troposphere and the lowermost stratosphere, and the model treatment of near tropopause chemistry and transport. During MOZAIC I (January 1993–September 1996), fully automatic devices were developed, installed aboard five commercial Airbus A340s, and flown in normal airline service. A second phase, MOZAIC II, started in October 1996 with the aim of continuing the O3 and H2O measurements and doing a feasibility study of new airborne devices (CO, NOy). Between September 1994 and December 1997, 7500 flights, representing 54,000 flight hours, were made over the continents (Europe, North America, Asia, South America, and Africa) and the Atlantic Ocean. Most of the measurements (90%) correspond to cruise altitudes (9–12 km), the remaining being obtained during ascents and descents near the 50 cities frequented by MOZAIC operations. This paper reports the main characteristics of the program and the flights, with a brief summary of the general content and focus of papers already published and companion papers of this special issue. These deal with the following: description and validation of the ozone and water vapor measurement methods; presentation of an accurate ozone climatology at 9–12 km altitude, over the Northern Hemisphere (130°W–140°E; 0°–80°N), and down to 30°S over South America and Africa; comparison between a 2-year MOZAIC ozone climatology (1994–1996; 0–12 km) and a long series of older measurements made since the 1980s at 8 stations of the Ozone Sounding Network; study of ozone-rich transients, up to 500 ppbv on a horizontal scale of 5–80 km, in the upper tropical troposphere; and comparison between MOZAIC ozone data and output from the global chemistry and transport model (CTM) TOMCAT.


Geophysical Research Letters | 2003

Fresh air in the 21st century

Michael J. Prather; M. Gauss; Terje K. Berntsen; Ivar S. A. Isaksen; Jostein K. Sundet; Isabelle Bey; Guy P. Brasseur; Frank Dentener; R. G. Derwent; David S. Stevenson; Lee Grenfell; D. A. Hauglustaine; Larry W. Horowitz; Daniel J. Jacob; Loretta J. Mickley; Mark G. Lawrence; Rolf von Kuhlmann; Jean-François Müller; Giovanni Pitari; Helen Rogers; Matthew S. Johnson; J. A. Pyle; Kathy S. Law; Michiel van Weele; Oliver Wild

Ozone is an air quality problem today for much of the worlds population. Regions can exceed the ozone air quality standards (AQS) through a combination of local emissions, meteorology favoring pollution episodes, and the clean-air baseline levels of ozone upon which pollution builds. The IPCC 2001 assessment studied a range of global emission scenarios and found that all but one projects increases in global tropospheric ozone during the 21st century. By 2030, near-surface increases over much of the northern hemisphere are estimated to be about 5 ppb (+2 to +7 ppb over the range of scenarios). By 2100 the two more extreme scenarios project baseline ozone increases of >20 ppb, while the other four scenarios give changes of -4 to +10 ppb. Even modest increases in the background abundance of tropospheric ozone might defeat current AQS strategies. The larger increases, however, would gravely threaten both urban and rural air quality over most of the northern hemisphere.


Journal of Geophysical Research | 2001

Stratosphere-troposphere exchange: Chemical sensitivity to mixing

J. Gavin Esler; David Tan; Peter H. Haynes; M. J. Evans; Kathy S. Law; Paul-Henri Plantevin; J. A. Pyle

We present examples of how chemical evolution can exhibit sensitivity to mixing arising from stratosphere-troposphere exchange. A chemical transport model is used to survey the chemical contrasts on isentropic surfaces that intersect the tropopause. Significant cross-tropopause gradients in both ozone and water vapor are shown to exist between 300 and 340 K, Back trajectories are used to confirm that air parcels with widely varying chemical properties are rapidly brought together in a typical quasi-isentropic stratosphere-troposphere exchange event. A two-box model is used to investigate the chemical evolution of stratospheric and tropospheric air parcels and to determine the effect of mixing between them. Mixing of stratospheric ozone and tropospheric water vapor is shown to lead to enhanced hydroxyl (OH) radical concentrations compared with background tropospheric and stratospheric values. The oxidation of CO, methane, and higher hydrocarbons is correspondingly increased, and NOx is also lost more rapidly with faster mixing. Also, in low NOx conditions, the rate of O-3 loss is found to increase with faster mixing, The consequences of this anomalous chemistry for chemical transport in stratosphere-troposphere exchange events are discussed. It is also noted that if NOx levels in either parcel are very high initially, mixing of NOx can become more important than O-3 or H2O in determining OH levels.


Atmospheric Chemistry and Physics | 2014

Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations

S. R. Arnold; Louisa Kent Emmons; S. A. Monks; Kathy S. Law; David A. Ridley; Solène Turquety; Simone Tilmes; Jennie L. Thomas; Johannes Flemming; V. Huijnen; Jingqiu Mao; Bryan N. Duncan; Stephen D. Steenrod; Y. Yoshida; Joakim Langner; Y. Long

Abstract. We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (> 50° N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multi-model comparison exercise. In model air masses dominated by fire emissions, ΔO3/ΔCO values ranged between 0.039 and 0.196 ppbv ppbv−1 (mean: 0.113 ppbv ppbv−1) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppbv−1 (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model ΔPAN/ΔCO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger ΔPAN/ΔCO values (4.47 to 7.00 pptv ppbv−1) than GEOS5-forced models (1.87 to 3.28 pptv ppbv−1), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.


Bulletin of the American Meteorological Society | 2015

Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The ACCESS Aircraft Campaign Experiment

Anke Roiger; Jennie L. Thomas; Hans Schlager; Kathy S. Law; J. Kim; Andreas Schäfler; Bernadett Weinzierl; F. Dahlkötter; I. Krisch; Louis Marelle; Andreas Minikin; Jean-Christophe Raut; Anja Reiter; Maximilian Rose; Monika Scheibe; Paul Stock; Robert Baumann; Cathy Clerbaux; Maya George; Tatsuo Onishi; Johannes Flemming

AbstractArctic sea ice has decreased dramatically in the past few decades and the Arctic is increasingly open to transit shipping and natural resource extraction. However, large knowledge gaps exist regarding composition and impacts of emissions associated with these activities. Arctic hydrocarbon extraction is currently under development owing to the large oil and gas reserves in the region. Transit shipping through the Arctic as an alternative to the traditional shipping routes is currently underway. These activities are expected to increase emissions of air pollutants and climate forcers (e.g., aerosols, ozone) in the Arctic troposphere significantly in the future. The authors present the first measurements of these activities off the coast of Norway taken in summer 2012 as part of the European Arctic Climate Change, Economy, and Society (ACCESS) project. The objectives include quantifying the impact that anthropogenic activities will have on regional air pollution and understanding the connections to ...


Bulletin of the American Meteorological Society | 2010

Global Chemistry Simulations in the AMMA Multimodel Intercomparison Project

J. E. Williams; Rinus Scheele; Peter F. J. van Velthoven; Kathy S. Law; B. Josse; V.-H. Peuch; Xin Yang; J. A. Pyle; V. Thouret; Brice Barret; Cathy Liousse; Frédéric Hourdin; Sophie Szopa; Anne Cozic

The authors present results obtained during the chemistry-transport modeling (CTM) component of the African Monsoon Multi-disciplinary Analysis Multimodel Intercomparison Project (AMMA-MIP) using the recently developed L3JRCv2 emission dataset for Af-rica, where emphasis is placed on the summer of 2006. With the use of passive tracers, the authors show that the application of different parameterizations to describe advection, vertical diffusion, and convective mixing in a suite of state-of-the-art global CTMs results in significantly different transport mechanisms westward of the African continent. Moreover, the authors identify that the atmospheric composition over the southern Atlantic is governed by air masses originating from southern Africa for this period, resulting in maximal concentrations around 5°S. Comparisons with ozonesonde measurements at Cotonou (6.2°N, 2.2°E) indicate that the models generally overpredict surface ozone and underpredict ozone in the upper troposphere. Moreover, using recent aircraft measurements, the authors show that the high ozone concentrations that occur around 700 hPa around 5°N are not captured by any of the models, indicating shortcomings in the description of transport, the magnitude and/or location of emissions, or the in situ chemical ozone production by the various chemical mechanisms employed.


Geophysical Research Letters | 2017

Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

Jennie L. Thomas; Chris Polashenski; Amber Jeanine Soja; Louis Marelle; Kimberley Casey; Hyun Deok Choi; Jean-Christophe Raut; Christine Wiedinmyer; Louisa Kent Emmons; Jerome D. Fast; Jacques Pelon; Kathy S. Law; Mark G. Flanner; Jack E. Dibb

Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.


Nature | 2010

Atmospheric chemistry: More ozone over North America

Kathy S. Law

Springtime ozone levels in the lower atmosphere over western North America are rising. The source of this pollution may be Asia, a finding that reaffirms the need for international air-quality control.


Journal of Geophysical Research | 2000

Uptake on fractal particles: 2. Applications

Slimane Bekki; Christine David; Kathy S. Law; D. M. Smith; Daniel Coelho; Jean-François Thovert; P. M. Adler

This first part of the paper is devoted to the validation of the theoretical framework developed in the companion paper [Coelho et al., this issue] against laboratory data. Although there are limited data suitable for a full-scale validation of the model, model-calculated surface to mass ratios of soot aggregates are found to be consistent with laboratory measurements. Then we use the framework to estimate errors which can be generated in the derivation of fractal aggregate properties from measurements of equivalent sizes. It is shown that the derivations of the aggregate mass and the surface area enhancement factor can be in error by at least an order of magnitude. The calculations are substantially improved when the fractal character of soot is accounted for. Since the gyration radius is a key parameter of the model, useful relationships are provided for converting aggregate equivalent sizes (mass transfer equivalent radius, hydrodynamic radius) into gyration radius. Finally, uptake of chemical species on atmospheric soot is investigated for the lower stratosphere and the boundary layer. The uptake is found to be mostly reaction limited, justifying the assumption of proportionality between the soot surface area and the uptake rate. However, the uptake occurs in the transition regime for the relatively compact aggregates found in urban areas.


AMBIO: A Journal of the Human Environment | 2017

Local Arctic air pollution: Sources and impacts

Kathy S. Law; Anke Roiger; Jennie L. Thomas; Louis Marelle; Jean-Christophe Raut; Stig B. Dalsøren; Jan S. Fuglestvedt; Paolo Tuccella; Bernadett Weinzierl; Hans Schlager

Local emissions of Arctic air pollutants and their impacts on climate, ecosystems and health are poorly understood. Future increases due to Arctic warming or economic drivers may put additional pressures on the fragile Arctic environment already affected by mid-latitude air pollution. Aircraft data were collected, for the first time, downwind of shipping and petroleum extraction facilities in the European Arctic. Data analysis reveals discrepancies compared to commonly used emission inventories, highlighting missing emissions (e.g. drilling rigs) and the intermittent nature of certain emissions (e.g. flaring, shipping). Present-day shipping/petroleum extraction emissions already appear to be impacting pollutant (ozone, aerosols) levels along the Norwegian coast and are estimated to cool and warm the Arctic climate, respectively. Future increases in shipping may lead to short-term (long-term) warming (cooling) due to reduced sulphur (CO2) emissions, and be detrimental to regional air quality (ozone). Further quantification of local Arctic emission impacts is needed.

Collaboration


Dive into the Kathy S. Law's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Quennehen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Cathy Clerbaux

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Fierli

National Research Council

View shared research outputs
Top Co-Authors

Avatar

F. Cairo

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge