Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Dumont is active.

Publication


Featured researches published by Jennifer A. Dumont.


Journal of Experimental Medicine | 2002

Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life : functional expression of FcRn in the mammalian lung

Gerburg M. Spiekermann; Patricia W. Finn; E. Sally Ward; Jennifer A. Dumont; Bonny L. Dickinson; Richard S. Blumberg; Wayne I. Lencer

Mucosal secretions of the human gastrointestinal, respiratory, and genital tracts contain the immunoglobulins (Ig)G and secretory IgA (sIgA) that function together in host defense. Exactly how IgG crosses epithelial barriers to function in mucosal immunity remains unknown. Here, we test the idea that the MHC class I–related Fc-receptor, FcRn, transports IgG across the mucosal surface of the human and mouse lung from lumen to serosa. We find that bronchial epithelial cells of the human, nonhuman primate, and mouse, express FcRn in adult-life, and demonstrate FcRn-dependent absorption of a bioactive Fc-fusion protein across the respiratory epithelium of the mouse in vivo. Thus, IgG, like dimeric IgA, can cross epithelial barriers by receptor-mediated transcytosis in adult animals. These data show that mucosal surfaces that express FcRn reabsorb IgG and explain a mechanism by which IgG may act in immune surveillance to retrieve lumenal antigens for processing in the lamina propria or systemically.


Blood | 2014

Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A

Johnny Mahlangu; Jerry S. Powell; Margaret V. Ragni; Pratima Chowdary; Neil C. Josephson; Ingrid Pabinger; Hideji Hanabusa; Naresh Gupta; Roshni Kulkarni; Patrick F. Fogarty; David J. Perry; Amy D. Shapiro; K. John Pasi; Shashikant Apte; Ivan Nestorov; Haiyan Jiang; Shuanglian Li; Srividya Neelakantan; Lynda M. Cristiano; Jaya Goyal; Jurg M. Sommer; Jennifer A. Dumont; Nigel Dodd; Karen Nugent; Gloria Vigliani; Alvin Luk; Aoife Brennan; Glenn F. Pierce

This phase 3 pivotal study evaluated the safety, efficacy, and pharmacokinetics of a recombinant FVIII Fc fusion protein (rFVIIIFc) for prophylaxis, treatment of acute bleeding, and perioperative hemostatic control in 165 previously treated males aged ≥12 years with severe hemophilia A. The study had 3 treatment arms: arm 1, individualized prophylaxis (25-65 IU/kg every 3-5 days, n = 118); arm 2, weekly prophylaxis (65 IU/kg, n = 24); and arm 3, episodic treatment (10-50 IU/kg, n = 23). A subgroup compared recombinant FVIII (rFVIII) and rFVIIIFc pharmacokinetics. End points included annualized bleeding rate (ABR), inhibitor development, and adverse events. The terminal half-life of rFVIIIFc (19.0 hours) was extended 1.5-fold vs rFVIII (12.4 hours; P < .001). Median ABRs observed in arms 1, 2, and 3 were 1.6, 3.6, and 33.6, respectively. In arm 1, the median weekly dose was 77.9 IU/kg; approximately 30% of subjects achieved a 5-day dosing interval (last 3 months on study). Across arms, 87.3% of bleeding episodes resolved with 1 injection. Adverse events were consistent with those expected in this population; no subjects developed inhibitors. rFVIIIFc was well-tolerated, had a prolonged half-life compared with rFVIII, and resulted in low ABRs when dosed prophylactically 1 to 2 times per week.


The New England Journal of Medicine | 2013

Phase 3 Study of Recombinant Factor IX Fc Fusion Protein in Hemophilia B

Jerry S. Powell; K John Pasi; Margaret V. Ragni; Margareth Castro Ozelo; Leonard A. Valentino; Johnny Mahlangu; Neil C. Josephson; David J. Perry; Marilyn J. Manco-Johnson; Shashikant Apte; Ross Baker; Godfrey Chi-Fung Chan; Nicolas Novitzky; Raymond Siu Ming Wong; Snejana Krassova; Geoffrey Allen; Haiyan Jiang; Alison Innes; Shuanglian Li; Lynda M. Cristiano; Jaya Goyal; Jurg M. Sommer; Jennifer A. Dumont; Karen Nugent; Gloria Vigliani; Aoife Brennan; Alvin Luk; Glenn F. Pierce

BACKGROUND Prophylactic factor replacement in patients with hemophilia B improves outcomes but requires frequent injections. A recombinant factor IX Fc fusion protein (rFIXFc) with a prolonged half-life was developed to reduce the frequency of injections required. METHODS We conducted a phase 3, nonrandomized, open-label study of the safety, efficacy, and pharmacokinetics of rFIXFc for prophylaxis, treatment of bleeding, and perioperative hemostasis in 123 previously treated male patients. All participants were 12 years of age or older and had severe hemophilia B (endogenous factor IX level of ≤2 IU per deciliter, or ≤2% of normal levels). The study included four treatment groups: group 1 received weekly dose-adjusted prophylaxis (50 IU of rFIXFc per kilogram of body weight to start), group 2 received interval-adjusted prophylaxis (100 IU per kilogram every 10 days to start), group 3 received treatment as needed for bleeding episodes (20 to 100 IU per kilogram), and group 4 received treatment in the perioperative period. A subgroup of group 1 underwent comparative sequential pharmacokinetic assessments of recombinant factor IX and rFIXFc. The primary efficacy end point was the annualized bleeding rate, and safety end points included the development of inhibitors and adverse events. RESULTS As compared with recombinant factor IX, rFIXFc exhibited a prolonged terminal half-life (82.1 hours) (P<0.001). The median annualized bleeding rates in groups 1, 2, and 3 were 3.0, 1.4, and 17.7, respectively. In group 2, 53.8% of participants had dosing intervals of 14 days or more during the last 3 months of the study. In groups 1, 2 and 3, 90.4% of bleeding episodes resolved after one injection. Hemostasis was rated as excellent or good during all major surgeries. No inhibitors were detected in any participants receiving rFIXFc; in groups 1, 2, and 3, 73.9% of participants had at least one adverse event, and serious adverse events occurred in 10.9% of participants. These events were mostly consistent with those expected in the general population of patients with hemophilia. CONCLUSIONS Prophylactic rFIXFc, administered every 1 to 2 weeks, resulted in low annualized bleeding rates in patients with hemophilia B. (Funded by Biogen Idec; ClinicalTrials.gov number, NCT01027364.).


Blood | 2012

Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients

Jerry S. Powell; Neil C. Josephson; Doris Quon; Margaret V. Ragni; Gregory Cheng; Ella Li; Haiyan Jiang; Lian Li; Jennifer A. Dumont; Jaya Goyal; Xin Zhang; Jurg M. Sommer; Justin McCue; Margaret Barbetti; Alvin Luk; Glenn F. Pierce

Current factor VIII (FVIII) products display a half-life (t(1/2)) of ∼ 8-12 hours, requiring frequent intravenous injections for prophylaxis and treatment of patients with hemophilia A. rFVIIIFc is a recombinant fusion protein composed of a single molecule of FVIII covalently linked to the Fc domain of human IgG(1) to extend circulating rFVIII t(1/2). This first-in-human study in previously treated subjects with severe hemophilia A investigated safety and pharmacokinetics of rFVIIIFc. Sixteen subjects received a single dose of rFVIII at 25 or 65 IU/kg followed by an equal dose of rFVIIIFc. Most adverse events were unrelated to study drug. None of the study subjects developed anti-rFVIIIFc antibodies or inhibitors. Across dose levels, compared with rFVIII, rFVIIIFc showed 1.54- to 1.70-fold longer elimination t(1/2), 1.49- to 1.56-fold lower clearance, and 1.48- to 1.56-fold higher total systemic exposure. rFVIII and rFVIIIFc had comparable dose-dependent peak plasma concentrations and recoveries. Time to 1% FVIII activity above baseline was ∼ 1.53- to 1.68-fold longer than rFVIII across dose levels. Each subject showed prolonged exposure to rFVIIIFc relative to rFVIII. Thus, rFVIIIFc may offer a viable therapeutic approach to achieve prolonged hemostatic protection and less frequent dosing in patients with hemophilia A. This trial was registered at www.clinicaltrials.gov as NCT01027377.


Blood | 2012

Recombinant factor IX-Fc fusion protein (rFIXFc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients

Amy D. Shapiro; Margaret V. Ragni; Leonard A. Valentino; Nigel S. Key; Neil C. Josephson; Jerry S. Powell; Gregory Cheng; Arthur R. Thompson; Jaya Goyal; Karen L. Tubridy; Robert T. Peters; Jennifer A. Dumont; Donald Euwart; Lian Li; Bengt Hallén; Peter Gozzi; Alan J. Bitonti; Haiyan Jiang; Alvin Luk; Glenn F. Pierce

Current factor IX (FIX) products display a half-life (t(1/2)) of ∼ 18 hours, requiring frequent intravenous infusions for prophylaxis and treatment in patients with hemophilia B. This open-label, dose-escalation trial in previously treated adult subjects with hemophilia B examined the safety and pharmacokinetics of rFIXFc. rFIXFc is a recombinant fusion protein composed of FIX and the Fc domain of human IgG(1), to extend circulating time. Fourteen subjects received a single dose of rFIXFc; 1 subject each received 1, 5, 12.5, or 25 IU/kg, and 5 subjects each received 50 or 100 IU/kg. rFIXFc was well tolerated, and most adverse events were mild or moderate in intensity. No inhibitors were detected in any subject. Dose-proportional increases in rFIXFc activity and Ag exposure were observed. With baseline subtraction, mean activity terminal t(1/2) and mean residence time for rFIXFc were 56.7 and 71.8 hours, respectively. This is ∼ 3-fold longer than that reported for current rFIX products. The incremental recovery of rFIXFc was 0.93 IU/dL per IU/kg, similar to plasma-derived FIX. These results show that rFIXFc may offer a viable therapeutic approach to achieve prolonged hemostatic protection and less frequent dosing in patients with hemophilia B. The trial was registered at www.clinicaltrials.gov as NCT00716716.


Blood | 2010

Prolonged activity of factor IX as a monomeric Fc fusion protein

Robert T. Peters; Susan C. Low; George D. Kamphaus; Jennifer A. Dumont; John V. Amari; Qi Lu; Greg Zarbis-Papastoitsis; Thomas Reidy; Elizabeth P. Merricks; Timothy C. Nichols; Alan J. Bitonti

Treatment of hemophilia B requires frequent infusions of factor IX (FIX) to prophylax against bleeding episodes. Hemophilia B management would benefit from a FIX protein with an extended half-life. A recombinant fusion protein (rFIXFc) containing a single FIX molecule attached to the Fc region of immunoglobulin G was administered intravenously and found to have an extended half-life, compared with recombinant FIX (rFIX) in normal mice, rats, monkeys, and FIX-deficient mice and dogs. Recombinant FIXFc protein concentration was determined in all species, and rFIXFc activity was measured in FIX-deficient animals. The half-life of rFIXFc was approximately 3- to 4-fold longer than that of rFIX in all species. In contrast, in mice in which the neonatal Fc receptor (FcRn) was deleted, the half-life of rFIXFc was similar to rFIX, confirming the increased circulatory time was due to protection of the rFIXFc via the Fc/FcRn interaction. Whole blood clotting time in FIX-deficient mice was corrected through 144 hours for rFIXFc, compared with 72 hours for rFIX; similar results were observed in FIX-deficient dogs. Taken together, these studies show the enhanced pharmacodynamic and pharmacokinetic properties of the rFIXFc fusion protein and provide the basis for evaluating rFIXFc in patients with hemophilia B.


BioDrugs | 2006

Monomeric Fc Fusions

Jennifer A. Dumont; Susan C. Low; Robert T. Peters; Alan J. Bitonti

The delivery of therapeutic proteins by noninvasive routes of administration has been a challenging goal, hence current modes of delivery generally require injections. However, we have recently shown that a naturally occurring receptor, the neonatal Fc receptor (FcRn) can be utilized to carry aerosolized therapeutic proteins conjugated to a portion of its respective ligand (Fc domain of immunoglobulin G) across epithelial cells of the lung to effectively deliver biologically active molecules to the bloodstream. First-generation dimeric Fc fusion molecules were successfully transported by the pulmonary route and biologic activity was demonstrated in both non-human primates and human volunteers. Continuing efforts to improve transport efficiency have led to the development of an alternate configuration of Fc fusion proteins with improved characteristics. These second generation Fc fusion molecules are monomeric with respect to the therapeutic protein and dimeric with respect to the Fc region, and have been termed Fc fusion ‘monomers’. Several different Fc fusion monomers have demonstrated improved transport efficiency, achieving high bioavailabilities for pulmonary delivery in nonhuman primates. While the traditional dimeric Fc fusion molecule generally increases the half-life compared with the unconjugated effector molecule, the monomer configuration has been shown to result in an even greater extension of the circulating half-life, which improves pharmacokinetic parameters for protein therapeutics, whether administered by pulmonary delivery or injection. Finally, many of the Fc monomer fusions have enhanced biologic activity compared with the dimeric configuration. Because of these many advantages, the monomer configuration promises to be an enabling advance to achieve clinically relevant, noninvasive delivery with potentially less frequent administration regimens for a broad range of protein therapeutics. In addition, molecules that are comprised of heterodimeric subunits or multi-subunit complexes can also be constructed as Fc fusions that result in a molecule with enhanced pharmacokinetics and greater bioactivity. Several examples of novel Fc fusion proteins, both monomer and heterodimer are described herein.


Blood | 2012

Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs

Jennifer A. Dumont; Tongyao Liu; Susan C. Low; Xin Zhang; George D. Kamphaus; Paul Sakorafas; Cara Fraley; Douglas Drager; Thomas Reidy; Justin McCue; Helen G Franck; Elizabeth P. Merricks; Timothy C. Nichols; Alan J. Bitonti; Glenn F. Pierce; Haiyan Jiang

Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation.


Critical Reviews in Biotechnology | 2015

Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics

Timo Rath; Kristi Baker; Jennifer A. Dumont; Robert T. Peters; Haiyan Jiang; Shuo-Wang Qiao; Wayne I. Lencer; Glenn F. Pierce; Richard S. Blumberg

Abstract Nearly 350 IgG-based therapeutics are approved for clinical use or are under development for many diseases lacking adequate treatment options. These include molecularly engineered biologicals comprising the IgG Fc-domain fused to various effector molecules (so-called Fc-fusion proteins) that confer the advantages of IgG, including binding to the neonatal Fc receptor (FcRn) to facilitate in vivo stability, and the therapeutic benefit of the specific effector functions. Advances in IgG structure-function relationships and an understanding of FcRn biology have provided therapeutic opportunities for previously unapproachable diseases. This article discusses approved Fc-fusion therapeutics, novel Fc-fusion proteins and FcRn-dependent delivery approaches in development, and how engineering of the FcRn–Fc interaction can generate longer-lasting and more effective therapeutics.


Journal of Immunology | 2007

Amelioration of Experimental Autoimmune Myasthenia Gravis in Rats by Neonatal FcR Blockade

Liming Liu; Ana M. García; Helen Santoro; Yixia Zhang; Kevin McDonnell; Jennifer A. Dumont; Alan J. Bitonti

The neonatal FcR (FcRn) plays a critical role in IgG homeostasis by protecting it from a lysosomal degradation pathway. It has been shown that IgG has an abnormally short half-life in FcRn-deficient mice and that FcRn blockade significantly increases the catabolism of serum IgG in mice. Therefore, reduction of serum IgG half-life may have therapeutic benefits in Ab-mediated autoimmune diseases. We have studied the therapeutic effects of an anti-rat FcRn mAb, 1G3, in two rat models of myasthenia gravis, a prototypical Ab-mediated autoimmune disease. Passive experimental autoimmune myasthenia gravis was induced by administration of an anti-acetylcholine receptor (AChR) mAb, and it was shown that treatment with 1G3 resulted in dose-dependent amelioration of the disease symptoms. In addition, the concentration of pathogenic Ab in the serum was reduced significantly. The effect of 1G3 was also studied in an active model of experimental autoimmune myasthenia gravis in which rats were immunized with AChR. Treatment with 1G3 significantly reduced the severity of the disease symptoms as well as the levels of total IgG and anti-AChR IgG relative to untreated animals. These data suggest that FcRn blockade may be an effective way to treat Ab-mediated autoimmune diseases.

Collaboration


Dive into the Jennifer A. Dumont's collaboration.

Top Co-Authors

Avatar

Alan J. Bitonti

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Bitonti

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge