Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Stewart is active.

Publication


Featured researches published by Jennifer A. Stewart.


European Journal of Pharmacology | 2000

Highly potent neurotensin analog that causes hypothermia and antinociception

Beth M Tyler-McMahon; Jennifer A. Stewart; Fernando Farinas; Daniel J. McCormick; Elliott Richelson

The tridecapeptide neurotensin has long been proposed as an endogenous neuroleptic. However, for neurotensin [or neurotensin(8-13) [NT(8-13)], the active fragment] to cause its effects, it must be administered centrally. Here, we report on an analog of NT(8-13), (N-methyl-Arg),Lys,Pro,L-neo-Trp,tert-Leu,Leu (NT69L), which contains a novel amino acid, L-neo5 degrees C (rectal), with a significant effect persisting for over 7 h. NT69L also caused a rapid (within 15 min) and persistent (for over 5 h) antinociceptive effect, as determined by the hot plate test. NT69L was overall the most potent and longest lasting neurotensin analog that has been reported. These studies provide the background for further testing of a stable, potent and long lasting neurotensin analog as a potential neuroleptic.


Neuropharmacology | 1999

In vitro binding and CNS effects of novel neurotensin agonists that cross the blood-brain barrier

B.M. Tyler; Christopher Lee Douglas; Abdul H. Fauq; Yuan Ping Pang; Jennifer A. Stewart; Bernadette Cusack; Daniel J. McCormick; Elliott Richelson

Animal studies with neurotensin (NT) directly injected into brain suggest that it has pharmacological properties similar to those of antipsychotic drugs. Here, we present radioligand binding data for some novel hexapeptide analogs of NT(8-13) at the molecularly cloned rat and human neurotensin receptors (NTR-1), along with behavioral and physiological effects of several of these peptides after intraperitoneal (i.p.) administration in rats. One unique analog, NT66L, which had high affinity (0.85 nM) for the molecularly cloned rat neurotensin receptor (NTR-1), caused a drop in body temperature and antinociception at doses as low as 0.1 mg/kg after i.p. injection. At 30 min post-injection, the ED50 for NT66L-induced hypothermia (rectal temperature) and antinociception (hot plate test) was 0.5 and 0.07 mg/kg, respectively. At a dose of 1 mg/kg i.p., NT66L caused 100% of the maximum possible effect for antinociception for up to 2 h after administration. At this dose body temperature lowering was greater than -2.5 degrees C from 20 to 120 min after i.p. administration. These results in animals suggest that NT66L has agonist properties at NTR-1 in vivo after extracranial administration and provide support for its further study in behavioral tests predictive of neuroleptic activity.


Antisense & Nucleic Acid Drug Development | 2002

Pharmacokinetics and tissue distribution of a peptide nucleic acid after intravenous administration

Beth M. McMahon; Dennis C. Mays; James J. Lipsky; Jennifer A. Stewart; Abdul H. Fauq; Elliott Richelson

Peptide nucleic acids (PNAs) are DNA analogs that hybridize to complementary nucleic sequences with high affinity and stability. In our previous work, we showed that a PNA complementary to a 12-base pair (bp) sequence of the coding region of the rat neurotensin receptor (rNTR1) mRNA is effective in significantly blocking a rats central responses to neurotensin (NT), even when the PNA is injected intraperitoneally (i.p.). Using a novel gel shift detection assay to detect PNA, we have now used this same PNA sequence to derive its pharmacokinetic variables and its tissue distribution in the rat. The PNA has a distribution half-life of 3 +/- 3 minutes and an elimination half-life of 17 +/- 3 minutes. The total plasma clearance and volume of distribution of this PNA were 3.4 +/- 0.9 ml/min x kg and 60 +/- 30 ml/kg. Two hours after dosing, the PNA was found at detectable but low levels in all organs examined-in order of decreasing concentration: kidney, liver, heart, brain, and spleen. Approximately 90% of the PNA dose was recovered as unchanged parent compound in the urine 24 hours after administration.


Brain Research | 2003

Selective tolerance to the hypothermic and anticataleptic effects of a neurotensin analog that crosses the blood–brain barrier

Mona Boules; Beth M. McMahon; Rui Wang; Lewis Warrington; Jennifer A. Stewart; Sally Yerbury; Abdul H. Fauq; Daniel J. McCormick; Elliott Richelson

NT69L, a neurotensin analog that crosses the blood-brain barrier, reduces body temperature, reverses apomorphine-induced climbing, haloperidol-induced catalepsy, and D-amphetamine- and cocaine-induced locomotor activity in rats. In this study we tested the development of tolerance to these effects of NT69L in rats. The blockade of apomorphine-induced climbing behavior and D-amphetamine- and cocaine-induced hyperactivity seen after a single acute injection did not show significant change with repeated daily injections of NT69L. Thus, for example, NT69L after five daily injections at a fixed dosage was as effective at reversing cocaine-induced hyperactivity as after the first injection. On the other hand, repeated daily injections of NT69L resulted in a diminished hypothermic response and a diminished anticataleptic effect against haloperidol. The effect of NT69L on blood glucose, cortisol, and thyroxine (T(4)) were all back to control levels after five daily injections. Thus, tolerance developed to NT69L after the first injection, when it was tested for causing hypothermia, blockade of haloperidol-induced catalepsy, and change in blood glucose, cortisol and T(4) levels. Since tolerance did not develop to the effects of drugs acting as direct (apomorphine) or indirect (D-amphetamine and cocaine) agonists at dopamine receptors over the course of 5 days, these findings suggest a selective role of neurotensin in the modulation of dopamine neurotransmission. Furthermore, due to the lack of development of tolerance, NT69L or similar analogs might be useful in modulating certain behavioral effects of psychostimulants or have potential use as an antipsychotic drug in humans.


Brain Research | 2001

Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neuroleptic-like properties.

Mona Boules; Beth M. McMahon; Lewis Warrington; Jennifer A. Stewart; Joshua Jackson; Abdul H. Fauq; Daniel J. McCormick; Elliott Richelson

Neurotensin (NT) is a tridecapeptide neurotransmitter in the central nervous system. It has been implicated in the therapeutic effects of neuroleptics. Central activity of NT can only be demonstrated by direct injection into the brain, since it is readily degraded by peptidases in the periphery. We have developed many NT(8-13) analogs that are resistant to peptidase degradation and can cross the blood-brain barrier (BBB). In this study, we report on one of these analogs, NT77L. NT77L induced hypothermia (ED(50)=6.5 mg/kg, i.p.) but induced analgesia only at the highest dose examined (20 mg/kg, i.p.). Like the atypical neuroleptic clozapine, NT77L blocked the climbing behavior in rats induced by the dopamine agonist apomorphine (600 microg/kg) with an ED(50) of 5.6 mg/kg (i.p.), without affecting the licking and the sniffing behaviors. By itself NT77L did not cause catalepsy, but it moderately reversed haloperidol-induced catalepsy with an ED(50) of 6.0 mg/kg (i.p.). Haloperidol alone did not lower body temperature, but it potentiated the body temperature lowering effect of NT77L. In studies using in vivo microdialysis NT77L showed similar effects on dopamine turnover to those of clozapine, and significantly different from those of haloperidol in the striatum. In the prefrontal cortex, NT77L significantly increased serotonergic transmission as evidenced by increased 5-hydroxyindole acetic acid:5-hydroxytryptamine (5-HIAA:5-HT) ratio. Thus, NT77L selectively caused hypothermia, over antinociception, while exhibiting atypical neuroleptic-like effects.


Life Sciences | 2002

Peptide nucleic acids specifically cause antigene effects in vivo by systemic injection

Beth M. McMahon; Jennifer A. Stewart; M.D. Bitner; Abdul H. Fauq; Daniel J. McCormick; Elliott Richelson

Peptide nucleic acids (PNAs) are uncharged DNA analogs that hybridize to complementary sequences with high affinity and stability. We previously showed that PNAs, after intraperitoneal injection into rats, are effective antisense compounds in vivo. The present study was designed to test whether PNAs also have antigene effects in vivo. The renin-angiotensin system is critical in the control of blood pressure. We designed and synthesized sense (antigene) PNAs to angiotensinogen, which is the precursor protein that leads to angiotensin I and II. Spontaneously hypertensive rats received intraperitoneal injections of either 20 mg/kg sense-angiotensinogen-PNA, mismatch-angiotensinogen PNA, or saline. Only the sense-angiotensinogen PNA treatment resulted in a significant decrease in plasma angiotensin I, systolic blood pressure, and liver and brain angiotensinogen mRNA levels. Thus, these results demonstrate on the molecular, protein, and physiological levels that antigene PNAs are effective in vivo upon systemic administration.


Journal of Molecular Neuroscience | 2002

Using peptide nucleic acids as gene-expression modifiers to reduce β-amyloid levels

Beth M. McMahon; Jennifer A. Stewart; Abdul H. Fauq; Steven G. Younkin; Linda Younkin; Elliott Richelson

The deposition of amyloid β peptide (Aβ) is an early and critical aspect of Alzheimer’s disease. Aβ is formed by the cleavage of amyloid precursor protein (APP). Studies of familial forms of Alzheimer’s disease indicate that elevated secretion of Aβ, particularly Aβ(1–42), is likely to be an etiologic agent in the disease. Aβ(1–42) is known to cause fibril formation and at elevated levels increases aggregation, which can lead to neuronal death. It has, therefore, been hypothesized that if the levels of Aβ, particularly Aβ(1–42), could be reduced that onset of Alzheimer’s disease could be slowed or possibly prevented. We, therefore, propose using PNAs targeted to APP to decrease plasma and brain levels of Aβ(1–40) and Aβ(1–42). This research project is designed to expand upon the discovery in our laboratory that systemic administration of antisense or antigene treatments utilizing peptide nucleic acids (PNAs) can be used to target and shut down proteins. Antisense strategies are methods of specifically targeting a particular protein by inhibiting translation by complementary binding to mRNA, while antigene methods inhibit transcription by complementary binding to DNA. For experiments involving antisense strategies, there are several advantages to using PNAs as opposed to the traditional oligonucleotide approaches. We initially preformed our studies in rats and identified a PNA sequence that was able to significantly reduce the levels of Aβ(1–41) in rat brain compared to vehicle control rats. We have switched to mice so that we can prepare to perform our experiments in a transgenic animal model of Alzheimer’s disease. We have, however, run into several technical difficulties with using mice compared to rats. In spite of this, we have identified one PNA sequence that specifically lowers mouse brain Aβ(1–40) Aβ(1–42) by 37% and 47%, respectively.


Brain Research | 2001

Intraperitoneal injection of antisense peptide nucleic acids targeted to the mu receptor decreases response to morphine and receptor protein levels in rat brain

Beth M. McMahon; Jennifer A. Stewart; Joshua Jackson; Abdul H. Fauq; Daniel J. McCormick; Elliott Richelson

To determine the effectiveness of peptide nucleic acids (PNAs) in vivo, we designed and synthesized PNAs antisense to the mu receptor, the molecular target of morphine for inducing antinociception. Responsiveness of rats to morphine and the levels of mu receptor expression after treatment was measured. We delivered intraperitoneal injections of antisense PNAs targeted to the mu receptor (AS-MOR), mismatch PNAs (AS-MOR MM), antisense PNAs targeted to the neurotensin receptor subtype 1 (AS-NTR1), or saline and then challenged the rats with 5 mg/kg morphine (intraperitonally) or neurotensin directly into the periaqueductal gray region of the brain. To avoid tolerance, separate groups of animals were tested at 24, 48, and 72 h post-PNA treatment. Only animals treated with the AS-MOR showed a reduction in their antinociceptive response to morphine. The lack of effect of morphine on the AS-MOR rats was profound at 24 and 48 h, but animals tested at 72 h were similar to control groups. At 24 h the AS-MOR rats had a significant 55% decrease in the levels of mu receptor in their periaqueductal gray region, while AS-MOR MM rats showed no significant change. Lastly, the AS-MOR rats continued to show a normal antinociceptive response to neurotensin. This study, therefore, provides additional support for the use of PNAs to target proteins within brain by systemically administered PNAs.


Biochemical Pharmacology | 2001

Altering behavioral responses and dopamine transporter protein with antisense peptide nucleic acids.

Beth M Tyler-McMahon; Jennifer A. Stewart; Joshua Jackson; M.D. Bitner; Abdul H. Fauq; Daniel J. McCormick; Elliott Richelson

The dopamine transporter (DAT) plays a role in locomotion and is an obligatory target for amphetamines. We designed and synthesized an antisense peptide nucleic acid (PNA) to rat DAT to examine the effect of this antisense molecule on locomotion and on responsiveness to amphetamines. Rats were injected intraperitoneally daily for 9 days with either saline, an antisense DAT PNA, a scrambled DAT PNA, or a mismatch DAT PNA. On days 7 and 9 after initial motility measurements were taken, the animals were challenged with 10 mg/kg of amphetamine and scored for motility. On day 7, there was no significant difference between the baseline levels of activity of any of the groups or their responses to amphetamine. On day 9, the antisense PNA-treated rats showed a statistically significant increase in their resting motility (P < 0.01). When these rats were challenged with amphetamine, motility of the saline-, scrambled PNA-, and mismatch PNA-treated animals showed increases of 31-, 36-, and 20-fold, respectively, while the antisense PNA-treated animals showed increases of only 3.4-fold (P < 0.01). ELISA results revealed a 32% decrease in striatal DAT in antisense PNA-treated rats compared with the saline, scrambled PNA, and mismatch PNA controls (P < 0.001). These results extend our previous findings that brain proteins can be knocked down in a specific manner by antisense molecules administered extracranially. Additionally, these results suggest some novel approaches for the treatment of diseases dependent upon the function of the dopamine transporter.


Journal of Molecular Neuroscience | 2003

Peptide Nucleic Acids Targeted to the Amyloid Precursor Protein

Beth M. McMahon; Jennifer A. Stewart; Abdul H. Fauq; Steven G. Younkin; Linda Younkin; Elliott Richelson

The depositing in brain of amyloid β peptide (Aβ), which is formed by the cleavage of amyloid precursor protein (APP), is likely an etiologic factor in Alzheimer’s disease (AD). Of the different forms of Aβ, Aβ(1–42) causes fibril formation and increases aggregation at elevated levels, which can lead to neuronal death. It is hypothesized that if the levels of Aβ, particularly Aβ(1–42), were reduced, then the onset of AD would be slowed or possibly prevented. Therefore, we are using peptide nucleic acids (PNAs) targeted to APP, as well as other key proteins, to try to decrease plasma and brain levels of Aβ(1–40) and Aβ(1–42). This research project was designed to utilize the expertise of our laboratory in the use of PNAs, a third-generation antisense or antigene molecule, to knock down proteins in brain. Antisense compounds specifically knock down the expression of a particular protein by inhibiting translation at the level of mRNA. On the other hand, antigene compounds knock down expression at the level of transcription. For experiments involving antisense strategies, there are several advantages to using PNAs as opposed to the traditional oligonucleotide molecules. We report here the ongoing studies with mice and rats with PNAs targeting APP, as well as BACE.

Collaboration


Dive into the Jennifer A. Stewart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge