Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Jansen is active.

Publication


Featured researches published by Karen Jansen.


Environmental Health Perspectives | 2005

Associations between Health Effects and Particulate Matter and Black Carbon in Subjects with Respiratory Disease

Karen Jansen; Timothy V. Larson; Jane Q. Koenig; Therese F. Mar; Carrie Fields; James A. Stewart; Morton Lippmann

We measured fractional exhaled nitric oxide (FENO), spirometry, blood pressure, oxygen saturation of the blood (SaO2), and pulse rate in 16 older subjects with asthma or chronic obstructive pulmonary disease (COPD) in Seattle, Washington. Data were collected daily for 12 days. We simultaneously collected PM10 and PM2.5 (particulate matter ≤10 μm or ≤2.5 μm, respectively) filter samples at a central outdoor site, as well as outside and inside the subjects’ homes. Personal PM10 filter samples were also collected. All filters were analyzed for mass and light absorbance. We analyzed within-subject associations between health outcomes and air pollution metrics using a linear mixed-effects model with random intercept, controlling for age, ambient relative humidity, and ambient temperature. For the 7 subjects with asthma, a 10 μg/m3 increase in 24-hr average outdoor PM10 and PM2.5 was associated with a 5.9 [95% confidence interval (CI), 2.9–8.9] and 4.2 ppb (95% CI, 1.3–7.1) increase in FENO, respectively. A 1 μg/m3 increase in outdoor, indoor, and personal black carbon (BC) was associated with increases in FENO of 2.3 ppb (95% CI, 1.1–3.6), 4.0 ppb (95% CI, 2.0–5.9), and 1.2 ppb (95% CI, 0.2–2.2), respectively. No significant association was found between PM or BC measures and changes in spirometry, blood pressure, pulse rate, or SaO2 in these subjects. Results from this study indicate that FENO may be a more sensitive marker of PM exposure than traditional health outcomes and that particle-associated BC is useful for examining associations between primary combustion constituents of PM and health outcomes.


Environmental Health Perspectives | 2005

Pulmonary Effects of Indoor- and Outdoor-Generated Particles in Children with Asthma

Jane Q. Koenig; Therese F. Mar; Ryan W. Allen; Karen Jansen; Thomas Lumley; Jeffrey H. Sullivan; Carol A. Trenga; Timothy V. Larson; L.-Jane S. Liu

Most particulate matter (PM) health effects studies use outdoor (ambient) PM as a surrogate for personal exposure. However, people spend most of their time indoors exposed to a combination of indoor-generated particles and ambient particles that have infiltrated. Thus, it is important to investigate the differential health effects of indoor- and ambient-generated particles. We combined our recently adapted recursive model and a predictive model for estimating infiltration efficiency to separate personal exposure (E) to PM2.5 (PM with aerodynamic diameter ≤2.5 μm) into its indoor-generated (Eig) and ambient-generated (Eag) components for 19 children with asthma. We then compared Eig and Eag to changes in exhaled nitric oxide (eNO), a marker of airway inflammation. Based on the recursive model with a sample size of eight children, Eag was marginally associated with increases in eNO [5.6 ppb per 10-μg/m3 increase in PM2.5; 95% confidence interval (CI), −0.6 to 11.9; p = 0.08]. Eig was not associated with eNO (−0.19 ppb change per 10μg/m3). Our predictive model allowed us to estimate Eag and Eig for all 19 children. For those combined estimates, only Eag was significantly associated with an increase in eNO (Eag: 5.0 ppb per 10-μg/m3 increase in PM2.5; 95% CI, 0.3 to 9.7; p = 0.04; Eig: 3.3 ppb per 10-μg/m3 increase in PM2.5; 95% CI, −1.1 to 7.7; p = 0.15). Effects were seen only in children who were not using corticosteroid therapy. We conclude that the ambient-generated component of PM2.5 exposure is consistently associated with increases in eNO and the indoor-generated component is less strongly associated with eNO.


Environmental Health Perspectives | 2005

Exhaled nitric oxide in children with asthma and short-term PM2.5 exposure in Seattle

Therese F. Mar; Karen Jansen; Kristen Shepherd; Thomas Lumley; Timothy V. Larson; Jane Q. Koenig

The objective of this study was to evaluate associations between short-term (hourly) exposures to particulate matter with aerodynamic diameters < 2.5 μm (PM2.5) and the fractional concentration of nitric oxide in exhaled breath (FeNO) in children with asthma participating in an intensive panel study in Seattle, Washington. The exposure data were collected with tapered element oscillation microbalance (TEOM) PM2.5 monitors operated by the local air agency at three sites in the Seattle area. FeNO is a marker of airway inflammation and is elevated in individuals with asthma. Previously, we reported that offline measurements of FeNO are associated with 24-hr average PM2.5 in a panel of 19 children with asthma in Seattle. In the present study using the same children, we used a polynomial distributed lag model to assess the association between hourly lags in PM2.5 exposure and FeNO levels. Our model controlled for age, ambient NO levels, temperature, relative humidity, and modification by use of inhaled corticosteroids. We found that FeNO was associated with hourly averages of PM2.5 up to 10–12 hr after exposure. The sum of the coefficients for the lag times associated with PM2.5 in the distributed lag model was 7.0 ppm FeNO. The single-lag-model FeNO effect was 6.9 [95% confidence interval (CI), 3.4 to 10.6 ppb] for a 1-hr lag, 6.3 (95% CI, 2.6 to 9.9 ppb ) for a 4-hr lag, and 0.5 (95% CI, −1.1 to 2.1 ppb) for an 8-hr lag. These data provide new information concerning the lag structure between PM2.5 exposure and a respiratory health outcome in children with asthma.


Hypertension | 2012

Blood Pressure Response to Controlled Diesel Exhaust Exposure in Human Subjects

Kristen E. Cosselman; Ranjini M. Krishnan; Assaf P. Oron; Karen Jansen; Alon Peretz; Jeffrey H. Sullivan; Timothy V. Larson; Joel D. Kaufman

Exposure to traffic-related air pollution is associated with risk of cardiovascular disease and mortality. We examined whether exposure to diesel exhaust increased blood pressure (BP) in human subjects. We analyzed data from 45 nonsmoking subjects, 18 to 49 years of age in double-blinded, crossover exposure studies, randomized to order. Each subject was exposed to diesel exhaust, maintained at 200 &mgr;g/m3 of fine particulate matter, and filtered air for 120 minutes on days separated by ≥2 weeks. We measured BP pre-exposure, at 30-minute intervals during exposure, and 3, 5, 7, and 24 hours from exposure initiation and analyzed changes from pre-exposure values. Compared with filtered air, systolic BP increased at all of the points measured during and after diesel exhaust exposure; the mean effect peaked between 30 and 60 minutes after exposure initiation (3.8 mm Hg [95% CI: −0.4 to 8.0 mm Hg] and 5.1 mm Hg [95% CI: 0.7–9.5 mm Hg], respectively). Sex and metabolic syndrome did not modify this effect. Combining readings between 30 and 90 minutes, diesel exhaust exposure resulted in a 4.4-mm Hg increase in systolic BP, adjusted for participant characteristics and exposure perception (95% CI: 1.1–7.7 mm Hg; P=0.0009). There was no significant effect on heart rate or diastolic pressure. Diesel exhaust inhalation was associated with a rapid, measurable increase in systolic but not diastolic BP in young nonsmokers, independent of perception of exposure. This controlled trial in humans confirms findings from observational studies. The effect may be important on a population basis given the worldwide prevalence of exposure to traffic-related air pollution.


Epidemiology | 2005

Fine particulate air pollution and cardiorespiratory effects in the elderly.

Therese F. Mar; Jane Q. Koenig; Karen Jansen; Jeffrey H. Sullivan; Joel D. Kaufman; Carol A. Trenga; Seyed H. Siahpush; L-J Sally Liu; Lucas M. Neas

Background: Past studies of air pollution effects among sensitive subgroups have produced inconsistent results. Our objective was to determine relationships between various measures of air pollution and cardiorespiratory effects in older subjects. Methods: We conducted a study that included repeated measurements of pulmonary function (arterial oxygen saturation) and cardiac function (heart rate and blood pressure) in a panel of 88 subjects (>57 years of age) in Seattle during the years 1999 to 2001. Subjects were healthy or had lung or heart disease. Each subject participated in sessions of 10 consecutive days of exposure monitoring and collection of health outcomes for up to 2 sessions. Associations between health outcomes and indoor, outdoor, and personal measures of particulate matter ≤2.5 micrometers (PM2.5) or particulate matter ≤10 micrometers (PM10) were evaluated using generalized estimating equations with an exchangeable working correlation matrix and robust standard errors. The model included terms for the within-subject, within-session effect; the within- subject, between-session effect; and an interaction term for medication usage. The model controlled for temperature, relative humidity, body mass index, and age. Results: Associations between air pollution and health measurements were found primarily in healthy subjects. Healthy subjects taking no medications had decreases in heart rate associated with indoor and outdoor PM2.5 and PM10. Healthy subjects on medication had small increases in systolic blood pressure associated with indoor PM2.5 and outdoor PM10. Heterogeneity analysis found differences among the health groups for associations with particulate air pollution in heart rate but not in blood pressure. Conclusion: Modest concentrations of air pollutants were associated with small changes in cardiac function.


Toxicology and Applied Pharmacology | 2009

Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds

Karen Jansen; Toby B. Cole; Sarah S. Park; Clement E. Furlong; Lucio G. Costa

A transgenic mouse model of the human hPON1(Q192R) polymorphism was used to address the role of paraoxonase (PON1) in modulating toxicity associated with exposure to mixtures of organophosphorus (OP) compounds. Chlorpyrifos oxon (CPO), diazoxon (DZO), and paraoxon (PO) are potent inhibitors of carboxylesterases (CaE). We hypothesized that a prior exposure to these OPs would increase sensitivity to malaoxon (MO), a CaE substrate, and the degree of the effect would vary among PON1 genotypes if the OP was a physiologically significant PON1 substrate in vivo. CPO and DZO are detoxified by PON1. For CPO hydrolysis, hPON1(R192) has a higher catalytic efficiency than hPON1(Q192). For DZO hydrolysis, the two alloforms have nearly equal catalytic efficiencies. For PO hydrolysis, the catalytic efficiency of PON1 is too low to be physiologically relevant. When wild-type mice were exposed dermally to CPO, DZO, or PO followed 4-h later by increasing doses of MO, toxicity was increased compared to mice receiving MO alone, presumably due to CaE inhibition. Potentiation of MO toxicity by CPO and DZO was greater in PON1(-/-) mice, which have greatly reduced capacity to detoxify CPO or DZO. Potentiation by CPO was more pronounced in hPON1(Q192) mice than in hPON1(R192) mice due to the decreased efficiency of hPON1(Q192) for detoxifying CPO. Potentiation by DZO was similar in hPON1(Q192) and hPON1(R192) mice, which are equally efficient at hydrolyzing DZO. Potentiation by PO was equivalent among all four genotypes. These results indicate that PON1 status can have a major influence on CaE-mediated detoxication of OP compounds.


Advances in Experimental Medicine and Biology | 2010

The Toxicity of Mixtures of Specific Organophosphate Compounds is Modulated by Paraoxonase 1 Status

Toby B. Cole; Karen Jansen; Sarah Park; Wan Fen Li; Clement E. Furlong; Lucio G. Costa

Most chemical exposures involve complex mixtures. The role of paraoxonase 1 (PON1) and the Q192R polymorphism in the detoxication of individual organophosphorous (OP) compounds has been well-established. The extent to which PON1 protects against a given OP is determined by its catalytic efficiency. We used a humanized transgenic mouse model of the Q192R polymorphism to demonstrate that PON1 modulates the toxicity of OP mixtures by altering the activity of another detoxication enzyme, carboxylesterase (CaE). Chlorpyrifos oxon (CPO), diazoxon (DZO), and paraoxon (PO) are potent inhibitors of CaE, both in vitro and in vivo. We hypothesized that exposure of mice to these OPs would increase their sensitivity to the CaE substrate, malaoxon (MO), and that the degree of effect would vary among PON1 genotypes if the OP was a physiologically relevant PON1 substrate. When wild-type mice were exposed dermally to CPO, DZO, or PO and then, after 4 h, to different doses of MO, the toxicity of MO was increased compared to mice that received MO alone. The potentiation of MO toxicity by CPO and DZO was higher in PON1 knockout mice, which are less able to detoxify CPO or DZO. Potentiation by CPO was higher in Q192 mice than in R192 mice due to the decreased ability of PON1(Q192) to detoxify CPO. Potentiation by DZO was similar in the Q192 and R192 mice, due to their equivalent effectiveness at detoxifying DZO. PO exposure resulted in equivalent potentiation of MO toxicity among all four genotypes. These results indicate that PON1 status modulates the ability of CaE to detoxicate OP compounds from specific mixed insecticide exposures. PON1 status can also impact the capacity to metabolize drugs or other CaE substrates following insecticide exposure.


American Journal of Respiratory and Critical Care Medicine | 2016

Pretreatment with Antioxidants Augments the Acute Arterial Vasoconstriction Caused by Diesel Exhaust Inhalation

Cora S. Sack; Karen Jansen; Kristen E. Cosselman; Carol A. Trenga; Pat Stapleton; Jason Allen; Alon Peretz; Casey Olives; Joel D. Kaufman

RATIONALE Diesel exhaust inhalation, which is the model traffic-related air pollutant exposure, is associated with vascular dysfunction. OBJECTIVES To determine whether healthy subjects exposed to diesel exhaust exhibit acute vasoconstriction and whether this effect could be modified by the use of antioxidants or by common variants in the angiotensin II type 1 receptor (AGTR1) and other candidate genes. METHODS In a genotype-stratified, double-blind, four-way crossover study, 21 healthy adult subjects were exposed at rest in a randomized, balanced order to diesel exhaust (200 μg/m(3) particulate matter with an aerodynamic diameter ≤ 2.5 μm [PM2.5]) and filtered air, and to pretreatment with antioxidants (N-acetylcysteine and ascorbate) and placebo. Before and after each exposure, brachial artery diameter (BAd) was assessed using ultrasound. Changes in BAd were compared across pretreatment and exposure sessions. Gene-exposure interactions were evaluated in the AGTR1 A1166C polymorphism, on which recruitment was stratified, and other candidate genes, including TRPV1 and GSTM1. MEASUREMENTS AND MAIN RESULTS Compared with filtered air, exposure to diesel exhaust resulted in a significant reduction in BAd (mean, -0.09 mm, 95% confidence interval [CI], -0.01 to -0.17; P = 0.03). Pretreatment with antioxidants augmented diesel exhaust-related vasoconstriction with a mean change in BAd of -0.18 mm (95% CI, -0.28 to -0.07 mm; P = 0.001). Diesel exhaust-related vasoconstriction was primarily observed in the variant alleles of AGTR1 and TRPV1. No association was found between diesel exhaust inhalation and flow-mediated dilation. CONCLUSIONS We confirmed that short-term exposure to diesel exhaust in healthy subjects is associated with acute vasoconstriction in a conductance artery and found suggestive evidence of involvement of nociception and renin-angiotensin systems in this effect. Pretreatment with an antioxidant regimen increased vasoconstriction.


Archive | 2008

Paraoxonase (PON1) and Organophosphate Toxicity

Lucio G. Costa; Toby B. Cole; Karen Jansen; Clement E. Furlong

Paraoxonase (PON1) is a high density lipoprotein-associated enzyme capable of hydrolyzing multiple substrates, including several organophosphorus (OP) insecticides and nerve agents, oxidized lipids and a number of drugs or pro-drugs. Several polymorphisms in the PON1 gene have been described, which have been shown to affect either the catalytic efficiency of hydrolysis or the expression level of the enzyme. Animal studies have shown that PON1 is an important determinant of the toxicity of certain OPs. Evidence for this was provided by cross-species comparisons, by administration of exogenous PON1 and by experiments in PON1 knockout and transgenic mice. Low PON1 plays also a role in the higher susceptibility of the young to OP toxicity. Recent findings also suggest that PON1 may modulate the toxicity resulting from exposure to mixtures of OP compounds


Circulation | 2016

Abstract 20747: Systolic Blood Pressure Response is Eliminated by Alpha 1 Adrenergic Blockade in Human Subjects

Kristen E. Cosselman; Karen Jansen; Cora S. Sack; Timothy V. Larson; Joel D. Kaufman

Collaboration


Dive into the Karen Jansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alon Peretz

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jane Q. Koenig

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Therese F. Mar

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge