Jennifer B. DelProposto
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer B. DelProposto.
Diabetes | 2008
Jennifer B. DelProposto; Daniel J. Westcott; Alan R. Saltiel
OBJECTIVE—To establish the mechanism of the phenotypic switch of adipose tissue macrophages (ATMs) from an alternatively activated (M2a) to a classically activated (M1) phenotype with obesity. RESEARCH DESIGN AND METHODS—ATMs from lean and obese (high-fat diet–fed) C57Bl/6 mice were analyzed by a combination of flow cytometry, immunofluorescence, and expression analysis for M2a and M1 genes. Pulse labeling of ATMs with PKH26 assessed the recruitment rate of ATMs to spatially distinct regions. RESULTS—Resident ATMs in lean mice express the M2a marker macrophage galactose N-acetyl-galactosamine specific lectin 1 (MGL1) and localize to interstitial spaces between adipocytes independent of CCR2 and CCL2. With diet-induced obesity, MGL1+ ATMs remain in interstitial spaces, whereas a population of MGL1−CCR2+ ATMs with high M1 and low M2a gene expression is recruited to clusters surrounding necrotic adipocytes. Pulse labeling showed that the rate of recruitment of new macrophages to MGL1− ATM clusters is significantly faster than that of interstitial MGL1+ ATMs. This recruitment is attenuated in Ccr2−/− mice. M2a- and M1-polarized macrophages produced different effects on adipogenesis and adipocyte insulin sensitivity in vitro. CONCLUSIONS—The shift in the M2a/M1 ATM balance is generated by spatial and temporal differences in the recruitment of distinct ATM subtypes. The obesity-induced switch in ATM activation state is coupled to the localized recruitment of an inflammatory ATM subtype to macrophage clusters from the circulation and not to the conversion of resident M2a macrophages to M1 ATMs in situ.
Cell | 2009
Shian Huey Chiang; Merlijn Bazuine; Lynn Geletka; Jonathan Mowers; Nicole M. White; Jing Tyan Ma; Jie Zhou; Nathan R. Qi; Dan Westcott; Jennifer B. DelProposto; Timothy S. Blackwell; Fiona E. Yull; Alan R. Saltiel
Obesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose tissue macrophages. IKKepsilon knockout mice are protected from high-fat diet-induced obesity, chronic inflammation in liver and fat, hepatic steatosis, and whole-body insulin resistance. These mice show increased energy expenditure and thermogenesis via enhanced expression of the uncoupling protein UCP1. They maintain insulin sensitivity in liver and fat, without activation of the proinflammatory JNK pathway. Gene expression analyses indicate that IKKepsilon knockout reduces expression of inflammatory cytokines, and changes expression of certain regulatory proteins and enzymes involved in glucose and lipid metabolism. Thus, IKKepsilon may represent an attractive therapeutic target for obesity, insulin resistance, diabetes, and other complications associated with these disorders.
Journal of Experimental Medicine | 2009
Daniel J. Westcott; Jennifer B. DelProposto; Lynn Geletka; Tianyi Wang; Kanakadurga Singer; Alan R. Saltiel
Adipose tissue macrophages (ATMs) play a critical role in obesity-induced inflammation and insulin resistance. Distinct subtypes of ATMs have been identified that differentially express macrophage galactose-type C-type lectin 1 (MGL1/CD301), a marker of alternatively activated macrophages. To evaluate if MGL1 is required for the anti-inflammatory function of resident (type 2) MGL1+ ATMs, we examined the effects of diet-induced obesity (DIO) on inflammation and metabolism in Mgl1−/− mice. We found that Mgl1 is not required for the trafficking of type 2 ATMs to adipose tissue. Surprisingly, obese Mgl1−/− mice were protected from glucose intolerance, insulin resistance, and steatosis despite having more visceral fat. This protection was caused by a significant decrease in inflammatory (type 1) CD11c+ ATMs in the visceral adipose tissue of Mgl1−/− mice. MGL1 was expressed specifically in 7/4hi inflammatory monocytes in the blood and obese Mgl1−/− mice had lower levels of 7/4hi monocytes. Mgl1−/− monocytes had decreased half-life after adoptive transfer and demonstrated decreased adhesion to adipocytes indicating a role for MGL1 in the regulation of monocyte function. This study identifies MGL1 as a novel regulator of inflammatory monocyte trafficking to adipose tissue in response to DIO.
Journal of Immunology | 2011
Jianhua Liu; Lynn Geletka; Colin Delaney; Jennifer B. DelProposto; Anjali Desai; Kelsie E. Oatmen; Gabriel Martinez-Santibanez; Annabelle Julius; Sanjay K. Garg; Raymond Yung
Age-related adiposity has been linked to chronic inflammatory diseases in late life. To date, the studies on adipose tissue leukocytes and aging have not taken into account the heterogeneity of adipose tissue macrophages (ATMs), nor have they examined how age impacts other leukocytes such as T cells in fat. Therefore, we have performed a detailed examination of ATM subtypes in young and old mice using state of the art techniques. Our results demonstrate qualitative changes in ATMs with aging that generate a decrease in resident type 2 (M2) ATMs. The profile of ATMs in old fat shifts toward a proinflammatory environment with increased numbers of CD206−CD11c− (double-negative) ATMs. The mechanism of this aging-induced shift in the phenotypic profile of ATMs was found to be related to a decrease in peroxisome proliferator-activated receptor-γ expression in ATMs and alterations in chemokine/chemokine receptor expression profiles. Furthermore, we have revealed a profound and unexpected expansion of adipose tissue T cells in visceral fat with aging that includes a significant induction of regulatory T cells in fat. Our findings demonstrate a unique inflammatory cell signature in the physiologic context of aging adipose tissue that differs from those induced in setting of diet-induced obesity.
Molecular metabolism | 2014
Kanakadurga Singer; Jennifer B. DelProposto; David L. Morris; Brian F. Zamarron; Taleen Mergian; Nidhi Maley; Kae Won Cho; Lynn Geletka; Perla Subbaiah; Lindsey A. Muir; Gabriel Martinez-Santibanez
Obesity is associated with an activated macrophage phenotype in multiple tissues that contributes to tissue inflammation and metabolic disease. To evaluate the mechanisms by which obesity potentiates myeloid activation, we evaluated the hypothesis that obesity activates myeloid cell production from bone marrow progenitors to potentiate inflammatory responses in metabolic tissues. High fat diet-induced obesity generated both quantitative increases in myeloid progenitors as well as a potentiation of inflammation in macrophages derived from these progenitors. In vivo, hematopoietic stem cells from obese mice demonstrated the sustained capacity to preferentially generate inflammatory CD11c+ adipose tissue macrophages after serial bone marrow transplantation. We identified that hematopoietic MyD88 was important for the accumulation of CD11c+ adipose tissue macrophage accumulation by regulating the generation of myeloid progenitors from HSCs. These findings demonstrate that obesity and metabolic signals potentiate leukocyte production and that dietary priming of hematopoietic progenitors contributes to adipose tissue inflammation.
Obesity | 2016
Lindsey A. Muir; Christopher K. Neeley; Kevin A. Meyer; Nicki A. Baker; Alice M. Brosius; Alexandra R. Washabaugh; Oliver A. Varban; Jonathan F. Finks; Brian F. Zamarron; Carmen G. Flesher; Joshua S. Chang; Jennifer B. DelProposto; Lynn Geletka; Gabriel Martinez-Santibanez; Niko Kaciroti; Robert W. O'Rourke
The relationship between adipose tissue fibrosis, adipocyte hypertrophy, and preadipocyte hyperplasia in the context of obesity and the correlation of these tissue‐based phenomena with systemic metabolic disease are poorly defined. The goal of this study was to clarify the relationship between adipose tissue fibrosis, adipocyte hypertrophy, and preadipocyte hyperplasia in human obesity and determine the correlation of these adipose‐tissue based phenomena with diabetes.
PLOS ONE | 2013
Kanakadurga Singer; David L. Morris; Kelsie E. Oatmen; Tianyi Wang; Jennifer B. DelProposto; Taleen Mergian; Kae Won Cho
Neuropeptide Y (NPY) is induced in peripheral tissues such as adipose tissue with obesity. The mechanism and function of NPY induction in fat are unclear. Given the evidence that NPY can modulate inflammation, we examined the hypothesis that NPY regulates the function of adipose tissue macrophages (ATMs) in response to dietary obesity in mice. NPY was induced by dietary obesity in the stromal vascular cells of visceral fat depots from mice. Surprisingly, the induction of Npy was limited to purified ATMs from obese mice. Significant basal production of NPY was observed in cultured bone marrow derived macrophage and dendritic cells (DCs) and was increased with LPS stimulation. In vitro, addition of NPY to myeloid cells had minimal effects on their activation profiles. NPY receptor inhibition promoted DC maturation and the production of IL-6 and TNFα suggesting an anti-inflammatory function for NPY signaling in DCs. Consistent with this, NPY injection into lean mice decreased the quantity of M1-like CD11c+ ATMs and suppressed Ly6chi monocytes. BM chimeras generated from Npy−/− donors demonstrated that hematopoietic NPY contributes to the obesity-induced induction of Npy in fat. In addition, loss of Npy expression from hematopoietic cells led to an increase in CD11c+ ATMs in visceral fat with high fat diet feeding. Overall, our studies suggest that NPY is produced by a range of myeloid cells and that obesity activates the production of NPY in adipose tissue macrophages with autocrine and paracrine effects.
Journal of Biological Chemistry | 2015
Kanakadurga Singer; Nidhi Maley; Taleen Mergian; Jennifer B. DelProposto; Kae Won Cho; Brian F. Zamarron; Gabriel Martinez-Santibanez; Lynn Geletka; Lindsey A. Muir; Phillip Wachowiak; Chaghig Demirjian
Background: Diet-induced obesity leads to a chronic low grade inflammation with production of activated macrophages associated with systemic sexually dimorphic metabolic dysfunction. Results: Males have enhanced myelopoiesis and a proinflammatory response to obesity compared with females. Conclusion: Sex differences in myelopoiesis result in dimorphic responses to obesity-induced inflammation. Significance: Given differences in inflammatory responses, targeted treatment strategies are probably required for males and females. Women of reproductive age are protected from metabolic disease relative to postmenopausal women and men. Most preclinical rodent studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of a similar protection observed in female mice. How sex differences in obesity-induced inflammatory responses contribute to these observations is unknown. We have compared and contrasted the effects of high fat diet-induced obesity on glucose metabolism and leukocyte activation in multiple depots in male and female C57Bl/6 mice. With both short term and long term high fat diet, male mice demonstrated increased weight gain and CD11c+ adipose tissue macrophage content compared with female mice despite similar degrees of adipocyte hypertrophy. Competitive bone marrow transplant studies demonstrated that obesity induced a preferential contribution of male hematopoietic cells to circulating leukocytes and adipose tissue macrophages compared with female cells independent of the sex of the recipient. Sex differences in macrophage and hematopoietic cell in vitro activation in response to obesogenic cues were observed to explain these results. In summary, this report demonstrates that male and female leukocytes and hematopoietic stem cells have cell-autonomous differences in their response to obesity that contribute to an amplified response in males compared with females.
Journal of Immunology | 2016
Kae Won Cho; Brian F. Zamarron; Lindsey A. Muir; Kanakadurga Singer; Cara Porsche; Jennifer B. DelProposto; Lynn Geletka; Kevin A. Meyer; Robert W. O'Rourke
Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80+CD11b+ cells overlaps with other leukocytes and that CD45+CD64+ is specific for ATM. The expression of core dendritic cell genes was enriched in CD11c+CD64− cells (ATDC), whereas core macrophage genes were enriched in CD45+CD64+ cells (ATM). CD11c+CD64− ATDCs expressed MHC class II and costimulatory receptors, and had similar capacity to stimulate CD4+ T cell proliferation as ATMs. ATDCs were predominantly CD11b+ conventional dendritic cells and made up the bulk of CD11c+ cells in adipose tissue with moderate high-fat diet exposure. Mixed chimeric experiments with Ccr2−/− mice demonstrated that high-fat diet–induced ATM accumulation from monocytes was dependent on CCR2, whereas ATDC accumulation was less CCR2 dependent. ATDC accumulation during obesity was attenuated in Ccr7−/− mice and was associated with decreased adipose tissue inflammation and insulin resistance. CD45+CD64+ ATM and CD45+CD64−CD11c+ ATDCs were identified in human obese adipose tissue and ATDCs were increased in s.c. adipose tissue compared with omental adipose tissue. These results support a revised strategy for unambiguous delineation of ATM and ATDC, and suggest that ATDCs are independent contributors to adipose tissue inflammation during obesity.
Journal of Leukocyte Biology | 2018
Lindsey A. Muir; Samadhi Kiridena; Cameron Griffin; Jennifer B. DelProposto; Lynn Geletka; Gabriel Martinez-Santibanez; Brian F. Zamarron; Hannah Lucas; Kanakadurga Singer; Robert W. O’Rourke
Obesity‐related changes in adipose tissue leukocytes, in particular adipose tissue macrophages (ATMs) and dendritic cells (ATDCs), are implicated in metabolic inflammation, insulin resistance, and altered regulation of adipocyte function. We evaluated stromal cell and white adipose tissue (WAT) expansion dynamics with high fat diet (HFD) feeding for 3–56 days, quantifying ATMs, ATDCs, endothelial cells (ECs), and preadipocytes (PAs) in visceral epididymal WAT and subcutaneous inguinal WAT. To better understand mechanisms of the early response to obesity, we evaluated ATM proliferation and lipid accumulation. ATMs, ATDCs, and ECs increased with rapid WAT expansion, with ATMs derived primarily from a CCR2‐independent resident population. WAT expansion stimulated proliferation in resident ATMs and ECs, but not CD11c+ ATMs or ATDCs. ATM proliferation was unperturbed in Csf2‐ and Rag1‐deficient mice with WAT expansion. Additionally, ATM apoptosis decreased with WAT expansion, and proliferation and apoptosis reverted to baseline with weight loss. Adipocytes reached maximal hypertrophy at 28 days of HFD, coinciding with a plateau in resident ATM accumulation and the appearance of lipid‐laden CD11c+ ATMs in visceral epididymal WAT. ATM increases were proportional to tissue expansion and adipocyte hypertrophy, supporting adipocyte‐mediated regulation of resident ATMs. The appearance of lipid‐laden CD11c+ ATMs at peak adipocyte size supports a role in responding to ectopic lipid accumulation within adipose tissue. In contrast, ATDCs increase independently of proliferation and may be derived from circulating precursors. These changes precede and establish the setting in which large‐scale adipose tissue infiltration of CD11c+ ATMs, inflammation, and adipose tissue dysfunction contributes to insulin resistance.