Jennifer C. Boldrick
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer C. Boldrick.
Nature | 2000
Ash A. Alizadeh; Michael B. Eisen; R. Eric Davis; Izidore S. Lossos; Andreas Rosenwald; Jennifer C. Boldrick; Hajeer Sabet; Truc Tran; Xin Yu; John Powell; Liming Yang; Gerald E. Marti; Troy Moore; James I. Hudson; Lisheng Lu; David B. Lewis; Robert Tibshirani; Gavin Sherlock; Wing C. Chan; Timothy C. Greiner; Dennis D. Weisenburger; James O. Armitage; Roger A. Warnke; Ronald Levy; Wyndham H. Wilson; Michael R. Grever; John C. Byrd; David Botstein; Patrick O. Brown; Louis M. Staudt
Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkins lymphoma, is clinically heterogeneous: 40% of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease. We proposed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours. Using DNA microarrays, we have conducted a systematic characterization of gene expression in B-cell malignancies. Here we show that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour. We identified two molecularly distinct forms of DLBCL which had gene expression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germinal centre B cells (‘germinal centre B-like DLBCL’); the second type expressed genes normally induced during in vitro activation of peripheral blood B cells (‘activated B-like DLBCL’). Patients with germinal centre B-like DLBCL had a significantly better overall survival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can thus identify previously undetected and clinically significant subtypes of cancer.
Immunity | 2000
Arthur L. Shaffer; X Yu; Yunsheng He; Jennifer C. Boldrick; Erick P Chan; Louis M. Staudt
BCL-6, a transcriptional repressor frequently translocated in lymphomas, regulates germinal center B cell differentiation and inflammation. DNA microarray screening identified genes repressed by BCL-6, including many lymphocyte activation genes, suggesting that BCL-6 modulates B cell receptor signals. BCL-6 repression of two chemokine genes, MIP-1alpha and IP-10, may also attenuate inflammatory responses. Blimp-1, another BCL-6 target, is important for plasmacytic differentiation. Since BCL-6 expression is silenced in plasma cells, repression of blimp-1 by BCL-6 may control plasmacytic differentiation. Indeed, inhibition of BCL-6 function initiated changes indicative of plasmacytic differentiation, including decreased expression of c-Myc and increased expression of the cell cycle inhibitor p27kip1. These data suggest that malignant transformation by BCL-6 involves inhibition of differentiation and enhanced proliferation.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Adeline R. Whitney; Maximilian Diehn; Stephen J. Popper; Ash A. Alizadeh; Jennifer C. Boldrick; David A. Relman; Patrick O. Brown
The nature and extent of interindividual and temporal variation in gene expression patterns in specific cells and tissues is an important and relatively unexplored issue in human biology. We surveyed variation in gene expression patterns in peripheral blood from 75 healthy volunteers by using cDNA microarrays. Characterization of the variation in gene expression in healthy tissue is an essential foundation for the recognition and interpretation of the changes in these patterns associated with infections and other diseases, and peripheral blood was selected because it is a uniquely accessible tissue in which to examine this variation in patients or healthy volunteers in a clinical setting. Specific features of interindividual variation in gene expression patterns in peripheral blood could be traced to variation in the relative proportions of specific blood cell subsets; other features were correlated with gender, age, and the time of day at which the sample was taken. An analysis of multiple sequential samples from the same individuals allowed us to discern donor-specific patterns of gene expression. These data help to define human individuality and provide a database with which disease-associated gene expression patterns can be compared.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jennifer C. Boldrick; Ash A. Alizadeh; Maximilian Diehn; Sandrine Dudoit; Chih Long Liu; Christopher E. Belcher; David Botstein; Louis M. Staudt; Patrick O. Brown; David A. Relman
The innate immune response is crucial for defense against microbial pathogens. To investigate the molecular choreography of this response, we carried out a systematic examination of the gene expression program in human peripheral blood mononuclear cells responding to bacteria and bacterial products. We found a remarkably stereotyped program of gene expression induced by bacterial lipopolysaccharide and diverse killed bacteria. An intricately choreographed expression program devoted to communication between cells was a prominent feature of the response. Other features suggested a molecular program for commitment of antigen-presenting cells to antigens captured in the context of bacterial infection. Despite the striking similarities, there were qualitative and quantitative differences in the responses to different bacteria. Modulation of this host-response program by bacterial virulence mechanisms was an important source of variation in the response to different bacteria.
The Lancet | 2004
Nazima Pathan; Cheryl Hemingway; Ash A. Alizadeh; Alick C. Stephens; Jennifer C. Boldrick; Emmanuelle E. Oragui; Colm McCabe; Steven B Welch; Adeline R. Whitney; Peter O'Gara; Simon Nadel; David A. Relman; Sian E. Harding; Michael Levin
BACKGROUND Myocardial failure has a central role in the complex pathophysiology of septic shock and contributes to organ failure and death. During the sepsis-induced inflammatory process, specific factors are released that depress myocardial contractile function. We aimed to identify these mediators of myocardial depression in meningococcal septic shock. METHODS We combined gene-expression profiling with protein and cellular methods to identify a serum factor causing cardiac dysfunction in meningococcal septic shock. We identified genes that were significantly upregulated in blood after exposure to meningococci. We then selected for further analysis those genes whose protein products had properties of a myocardial depressant factor--specifically a 12-25 kDa heat-stable protein that is released into serum shortly after onset of meningococcal infection. FINDINGS We identified 174 significantly upregulated genes in meningococcus-infected blood: six encoded proteins that were of the predicted size and had characteristics of a myocardial depressant factor. Of these, interleukin 6 caused significant myocardial depression in vitro. Removal of interleukin 6 from serum samples of patients with meningococcaemia and from supernatants of inflammatory cells stimulated by meningococci in vitro abolished the negative inotropic activity. Furthermore, concentrations in serum of interleukin 6 strongly predicted degree of myocardial dysfunction and severity of disease in children with meningococcal septic shock. INTERPRETATION Interleukin 6 is a mediator of myocardial depression in meningococcal disease. This cytokine and its downstream mediators could be a target for future treatment strategies.
Journal of Cutaneous Pathology | 2003
Susan M. Swetter; Jennifer C. Boldrick; Peterson Pierre; Patricia Wong; Barbara M. Egbert
Background: Wound healing following a partial biopsy of basal cell (BCC) and squamous cell carcinomas (SCC) may induce tumor regression.
The FASEB Journal | 2004
Einari Aavik; Ajit Mahapatra; Jennifer C. Boldrick; Xin Chen; Christopher Barry; Daniel Dutoit; Minnie M. Sarwal; Pekka Häyry
Treatment for fibroproliferative restenosis after angioplasty and endovascular surgery is an unmet medical need. Rational therapy and drug design still lack the very basic knowledge about the underlying biological processes leading to pathological changes in the vessel wall. We have developed a primate model for vascular response to denudation‐overstretch injury of baboon carotid artery. With this model, we have investigated the time course of vascular expression of 41,000 human cDNA clones and correlated these changes with carotid histology and function. Analysis revealed 20,788 differentially regulated cDNA clones. After high stringency data selection, the most prominently regulated 1629 cDNA clones representing 1510 genes of known function were clustered. Genes corresponding to functional and anatomical alterations in the injured carotid wall were further aligned into functional groups according to Gene Ontology classification. The observed expression patterns faithfully reflected the functional and anatomical alterations observed in the vascular wall in response to injury. The analysis presents a tentative model for genomic response to balloon catheter injury and a road map to identify time‐ related genomic alterations in human vascular specimens.
Statistical Science | 2003
Sandrine Dudoit; Juliet Popper Shaffer; Jennifer C. Boldrick
Journal of Investigative Dermatology | 2005
Susan M. Swetter; Jennifer C. Boldrick; Sandy Y. Jung; Barbara M. Egbert; Jeff D. Harvell
Journal of The American Academy of Dermatology | 2007
Jennifer C. Boldrick; Christle J. Layton; Josephine Nguyen; Susan M. Swetter