Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer C. Darnell is active.

Publication


Featured researches published by Jennifer C. Darnell.


Cell | 2011

FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism

Jennifer C. Darnell; Sarah J. Van Driesche; Chaolin Zhang; Ka Ying Sharon Hung; Aldo Mele; Claire E. Fraser; Elizabeth F. Stone; Cynthia Chen; John J. Fak; Sung Wook Chi; Donny D. Licatalosi; Joel D. Richter; Robert B. Darnell

FMRP loss of function causes Fragile X syndrome (FXS) and autistic features. FMRP is a polyribosome-associated neuronal RNA-binding protein, suggesting that it plays a key role in regulating neuronal translation, but there has been little consensus regarding either its RNA targets or mechanism of action. Here, we use high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) to identify FMRP interactions with mouse brain polyribosomal mRNAs. FMRP interacts with the coding region of transcripts encoding pre- and postsynaptic proteins and transcripts implicated in autism spectrum disorders (ASD). We developed a brain polyribosome-programmed translation system, revealing that FMRP reversibly stalls ribosomes specifically on its target mRNAs. Our results suggest that loss of a translational brake on the synthesis of a subset of synaptic proteins contributes to FXS. In addition, they provide insight into the molecular basis of the cognitive and allied defects in FXS and ASD and suggest multiple targets for clinical intervention.


Cell | 2001

Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome.

Victoria Brown; Peng Jin; Stephanie Ceman; Jennifer C. Darnell; William T. O'Donnell; Scott A. Tenenbaum; Xiaokui Jin; Yue Feng; Keith D. Wilkinson; Jack D. Keene; Robert B. Darnell; Stephen T. Warren

Fragile X syndrome results from the absence of the RNA binding FMR protein. Here, mRNA was coimmunoprecipitated with the FMRP ribonucleoprotein complex and used to interrogate microarrays. We identified 432 associated mRNAs from mouse brain. Quantitative RT-PCR confirmed some to be >60-fold enriched in the immunoprecipitant. In parallel studies, mRNAs from polyribosomes of fragile X cells were used to probe microarrays. Despite equivalent cytoplasmic abundance, 251 mRNAs had an abnormal polyribosome profile in the absence of FMRP. Although this represents <2% of the total messages, 50% of the coimmunoprecipitated mRNAs with expressed human orthologs were found in this group. Nearly 70% of those transcripts found in both studies contain a G quartet structure, demonstrated as an in vitro FMRP target. We conclude that translational dysregulation of mRNAs normally associated with FMRP may be the proximal cause of fragile X syndrome, and we identify candidate genes relevant to this phenotype.


Nature | 2008

HITS-CLIP yields genome-wide insights into brain alternative RNA processing

Donny D. Licatalosi; Aldo Mele; John J. Fak; Jernej Ule; Melis Kayikci; Sung Wook Chi; Tyson A. Clark; Anthony C. Schweitzer; John E. Blume; Xuning Wang; Jennifer C. Darnell; Robert B. Darnell

Protein–RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein–RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova–RNA interactions in 3′ untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein–RNA interactions in vivo.


Cell | 2001

Fragile X Mental Retardation Protein Targets G Quartet mRNAs Important for Neuronal Function

Jennifer C. Darnell; Kirk B. Jensen; Peng Jin; Victoria Brown; Stephen T. Warren; Robert B. Darnell

Loss of fragile X mental retardation protein (FMRP) function causes the fragile X mental retardation syndrome. FMRP harbors three RNA binding domains, associates with polysomes, and is thought to regulate mRNA translation and/or localization, but the RNAs to which it binds are unknown. We have used RNA selection to demonstrate that the FMRP RGG box binds intramolecular G quartets. This data allowed us to identify mRNAs encoding proteins involved in synaptic or developmental neurobiology that harbor FMRP binding elements. The majority of these mRNAs have an altered polysome association in fragile X patient cells. These data demonstrate that G quartets serve as physiologically relevant targets for FMRP and identify mRNAs whose dysregulation may underlie human mental retardation.


Nature Medicine | 1998

Tumor-specific killer cells in paraneoplastic cerebellar degeneration.

Matthew L. Albert; Jennifer C. Darnell; Armin Bender; Loise M. Francisco; Nina Bhardwaj; Robert B. Darnell

Models for immune-mediated tumor regression in mice have defined an essential role for cytotoxic T lymphocytes (CTLs); however, naturally occurring tumor immunity in humans is poorly understood. Patients with paraneoplastic cerebellar degeneration (PCD) provide an opportunity to explore the mechanisms underlying tumor immunity to breast and ovarian cancer. Although tumor immunity and autoimmune neuronal degeneration in PCD correlates with a specific antibody response to the tumor and brain antigen cdr2, this humoral response has not been shown to be pathogenic. Here we present evidence for a specific cellular immune response in PCD patients. We have detected expanded populations of MHC class I-restricted cdr2-specific CTLs in the blood of 3/3 HLA-A2.1+ PCD patients, providing the first description, to our knowledge, of tumor-specific CTLs using primary human cells in a simple recall assay. Cross-presentation of apoptotic cells by dendritic cells also led to a potent CTL response. These results indicate a model whereby immature dendritic cells that engulf apoptotic tumor cells can mature and migrate to draining lymph organs where they could induce a CTL response to tissue-restricted antigens. In PCD, peripheral activation of cdr2-specific CTLs is likely to contribute to the subsequent development of the autoimmune neuronal degeneration.


Nature Neuroscience | 2013

The translation of translational control by FMRP: therapeutic targets for FXS

Jennifer C. Darnell; Eric Klann

De novo protein synthesis is necessary for long-lasting modifications in synaptic strength and dendritic spine dynamics that underlie cognition. Fragile X syndrome (FXS), characterized by intellectual disability and autistic behaviors, holds promise for revealing the molecular basis for these long-term changes in neuronal function. Loss of function of the fragile X mental retardation protein (FMRP) results in defects in synaptic plasticity and cognition in many models of the disease. FMRP is a polyribosome-associated RNA-binding protein that regulates the synthesis of a set of plasticity-reated proteins by stalling ribosomal translocation on target mRNAs. The recent identification of mRNA targets of FMRP and its upstream regulators, and the use of small molecules to stall ribosomes in the absence of FMRP, have the potential to be translated into new therapeutic avenues for the treatment of FXS.


The Journal of Neuroscience | 2004

Fragile X Mental Retardation Protein Is Associated with Translating Polyribosomes in Neuronal Cells

Giovanni Stefani; Claire E. Fraser; Jennifer C. Darnell; Robert B. Darnell

Fragile X mental retardation protein (FMRP) is an RNA binding protein encoded by the gene FMR1, whose expression is impaired in patients with fragile X mental retardation. The association of FMRP with polyribosomes in non-neural cell lines has previously suggested that FMRP is involved in translational regulation. However, the relevance of these studies to neuronal function has been questioned by the finding that FMRP in brain is not associated with polyribosomes, but is part of small ribonucleo-protein complexes that do not appear to include ribosomes. Here we optimize methods to analyze brain polyribosomes, allowing us to definitively demonstrate that FMRP forms complexes with cortical brain polyribosomes. Moreover, we demonstrate in neuroblastoma cells that the FMRP-polyribosome complexes are sensitive to puromycin, a drug that targets actively translating ribosomes. These data indicate that FMRP associates with functional polyribosomes in neurons.


Nature Structural & Molecular Biology | 2011

Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction

Anh Tuân Phan; Vitaly Kuryavyi; Jennifer C. Darnell; Alexander Serganov; Ananya Majumdar; Serge Ilin; Tanya Raslin; Anna Polonskaia; Cynthia Chen; David Clain; Robert B. Darnell; Dinshaw J Patel

We have determined the solution structure of the complex between an arginine-glycine-rich RGG peptide from the human fragile X mental retardation protein (FMRP) and an in vitro–selected guanine-rich (G-rich) sc1 RNA. The bound RNA forms a newly discovered G-quadruplex separated from the flanking duplex stem by a mixed junctional tetrad. The RGG peptide is positioned along the major groove of the RNA duplex, with the G-quadruplex forcing a sharp turn of R10GGGGR15 at the duplex-quadruplex junction. Arg10 and Arg15 form cross-strand specificity–determining intermolecular hydrogen bonds with the major-groove edges of guanines of adjacent Watson-Crick G•C pairs. Filter-binding assays on RNA and peptide mutations identify and validate contributions of peptide-RNA intermolecular contacts and shape complementarity to molecular recognition. These findings on FMRP RGG domain recognition by a combination of G-quadruplex and surrounding RNA sequences have implications for the recognition of other genomic G-rich RNAs.


Nature Protocols | 2014

Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis

Michael J. Moore; Chaolin Zhang; Emily Conn Gantman; Aldo Mele; Jennifer C. Darnell; Robert B. Darnell

The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ∼8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d.


PLOS Genetics | 2009

A Mouse Model of the Human Fragile X Syndrome I304N Mutation

Julie B. Zang; Elena Nosyreva; Corinne M. Spencer; Lenora Volk; Kiran Musunuru; Ru Zhong; Elizabeth F. Stone; Lisa A. Yuva-Paylor; Kimberly M. Huber; Richard Paylor; Jennifer C. Darnell; Robert B. Darnell

The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA–binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5′UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1) in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N) in the second FMRP KH-type RNA–binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1–null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder.

Collaboration


Dive into the Jennifer C. Darnell's collaboration.

Top Co-Authors

Avatar

Robert B. Darnell

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Mele

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Fak

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Polonskaia

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge