Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer E. Yeh is active.

Publication


Featured researches published by Jennifer E. Yeh.


Nature | 2008

Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation

Wei Guo; Joseph L. Lasky; Chun-Ju Chang; Sherly Mosessian; Xiaoman Lewis; Yun Xiao; Jennifer E. Yeh; James Y. Chen; M. Luisa Iruela-Arispe; Marileila Varella-Garcia; Hong Wu

Cancer stem cells, which share many common properties and regulatory machineries with normal stem cells, have recently been proposed to be responsible for tumorigenesis and to contribute to cancer resistance. The main challenges in cancer biology are to identify cancer stem cells and to define the molecular events required for transforming normal cells to cancer stem cells. Here we show that Pten deletion in mouse haematopoietic stem cells leads to a myeloproliferative disorder, followed by acute T-lymphoblastic leukaemia (T-ALL). Self-renewable leukaemia stem cells (LSCs) are enriched in the c-KitmidCD3+Lin- compartment, where unphosphorylated β-catenin is significantly increased. Conditional ablation of one allele of the β-catenin gene substantially decreases the incidence and delays the occurrence of T-ALL caused by Pten loss, indicating that activation of the β-catenin pathway may contribute to the formation or expansion of the LSC population. Moreover, a recurring chromosomal translocation, T(14;15), results in aberrant overexpression of the c-myc oncogene in c-KitmidCD3+Lin- LSCs and CD3+ leukaemic blasts, recapitulating a subset of human T-ALL. No alterations in Notch1 signalling are detected in this model, suggesting that Pten inactivation and c-myc overexpression may substitute functionally for Notch1 abnormalities, leading to T-ALL development. Our study indicates that multiple genetic or molecular alterations contribute cooperatively to LSC transformation.


Science Signaling | 2014

STAT3 Induction of miR-146b Forms a Feedback Loop to Inhibit the NF-κB to IL-6 Signaling Axis and STAT3-Driven Cancer Phenotypes

Michael Xiang; Nicolai Juul Birkbak; Vida Vafaizadeh; Sarah R. Walker; Jennifer E. Yeh; Suhu Liu; Yasmin Kroll; Mark P. Boldin; Konstantin D. Taganov; Bernd Groner; Andrea L. Richardson; David A. Frank

An epigenetic modification prevents the production of a tumor-suppressing and anti-inflammatory microRNA in receptor-negative breast cancers. Micro-Mediated Feedback Chronic inflammation and interleukin-6 (IL-6), which is produced in response to nuclear factor κB (NF-κB) signaling, is a proinflammatory cytokine associated with cancer. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor stimulated in response to IL-6 and its receptor-bound kinases from the Janus kinase (JAK) family. Xiang et al. found that STAT3 stimulated expression of the gene encoding the microRNA miR-146b, which inhibited NF-κB–mediated induction of IL-6 to prevent a proinflammatory response in normal breast epithelial cells. However, promoter methylation reduced miR-146b expression in breast cancer cell lines and patient tissue, and its expression correlated with survival in patients with estrogen receptor– or triple-negative breast cancer. In addition to inhibiting STAT3 activity and cell migration and invasion, introduction of a miR-146b mimic was as cytotoxic as pharmacological inhibition of JAK to triple-negative breast cancer cells in culture, and combination therapy in cells was additive. The findings suggest that therapies reintroducing or stimulating miR-146b production may be beneficial to patients with tumors with high STAT3 activity. Interleukin-6 (IL-6)–mediated activation of signal transducer and activator of transcription 3 (STAT3) is a mechanism by which chronic inflammation can contribute to cancer and is a common oncogenic event. We discovered a pathway, the loss of which is associated with persistent STAT3 activation in human cancer. We found that the gene encoding the tumor suppressor microRNA miR-146b is a direct STAT3 target gene, and its expression was increased in normal breast epithelial cells but decreased in tumor cells. Methylation of the miR-146b promoter, which inhibited STAT3-mediated induction of expression, was increased in primary breast cancers. Moreover, we found that miR-146b inhibited nuclear factor κB (NF-κB)–dependent production of IL-6, subsequent STAT3 activation, and IL-6/STAT3–driven migration and invasion in breast cancer cells, thereby establishing a negative feedback loop. In addition, higher expression of miR-146b was positively correlated with patient survival in breast cancer subtypes with increased IL6 expression and STAT3 phosphorylation. Our results identify an epigenetic mechanism of crosstalk between STAT3 and NF-κB relevant to constitutive STAT3 activation in malignancy and the role of inflammation in oncogenesis.


Molecular and Cellular Biology | 2013

STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6

Sarah R. Walker; Erik Nelson; Jennifer E. Yeh; Luca Pinello; Guo-Cheng Yuan; David A. Frank

ABSTRACT Inappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5.


Current Opinion in Oncology | 2013

Targeting transcription factors: promising new strategies for cancer therapy.

Jennifer E. Yeh; Patricia A. Toniolo; David A. Frank

Purpose of review A lack of effective treatments for advanced cancer remains a major challenge in oncology. Because cancer is a disease associated with aberrant gene expression patterns, transcription factors, which serve as the convergence points of oncogenic signaling and are functionally altered in many cancers, hold great therapeutic promise. Recent findings Many human cancers are dependent on the inappropriate activity of oncogenic transcription factors. By contrast, normal cells can often tolerate disruption of these proteins with little toxicity. Direct inhibition of transcription factor expression (e.g., with RNA interference or microRNAs) and DNA binding (e.g., with oligodeoxynucleotide decoys or pyrrole-imidazole polyamides) has demonstrated antitumor responses with minimal side-effects. New strategies of targeting transcription factors include disrupting critical protein–protein interactions, and restricting binding at the epigenetic level by modulating chromatin accessibility. Moreover, targeting transcription factors in tumor-associated immune cells has the potential to overcome tumor immunoresistance. Summary Transcription factors are an important target for cancer therapy, both through direct anticancer effects and immunomodulatory actions. Newly developed delivery systems that specifically target tumor cells also create opportunities for successes in targeting transcription in cancer.


Journal of Immunology | 2015

Inhibiting STAT5 by the BET Bromodomain Inhibitor JQ1 Disrupts Human Dendritic Cell Maturation

Patricia A. Toniolo; Suhu Liu; Jennifer E. Yeh; Pedro M. Moraes-Vieira; Sarah R. Walker; Vida Vafaizadeh; José Alexandre Marzagão Barbuto; David A. Frank

Maturation of dendritic cells (DCs) is required to induce T cell immunity, whereas immature DCs can induce immune tolerance. Although the transcription factor STAT5 is suggested to participate in DC maturation, its role in this process remains unclear. In this study, we investigated the effect of STAT5 inhibition on LPS-induced maturation of human monocyte-derived DCs (Mo-DCs). We inhibited STAT5 by treating Mo-DCs with JQ1, a selective inhibitor of BET epigenetic readers, which can suppress STAT5 function. We found that JQ1 inhibits LPS-induced STAT5 phosphorylation and nuclear accumulation, thereby attenuating its transcriptional activity in Mo-DCs. The diminished STAT5 activity results in impaired maturation of Mo-DCs, as indicated by defective upregulation of costimulatory molecules and CD83, as well as reduced secretion of IL-12p70. Expression of constitutively activated STAT5 in JQ1-treated Mo-DCs overcomes the effects of JQ1 and enhances the expression of CD86, CD83, and IL-12. The activation of STAT5 in Mo-DCs is mediated by GM-CSF produced following LPS stimulation. Activated STAT5 then leads to increased expression of both GM-CSF and GM-CSFR, triggering an autocrine loop that further enhances STAT5 signaling and enabling Mo-DCs to acquire a more mature phenotype. JQ1 decreases the ability of Mo-DCs to induce allogeneic CD4+ and CD8+ T cell proliferation and production of proinflammatory cytokines. Furthermore, JQ1 leads to a reduced generation of inflammatory CD8+ T cells and decreased Th1 differentiation. Thus, JQ1 impairs LPS-induced Mo-DC maturation by inhibiting STAT5 activity, thereby generating cells that can only weakly stimulate an adaptive-immune response. Therefore, JQ1 could have beneficial effects in treating T cell–mediated inflammatory diseases.


ChemMedChem | 2016

STAT3-Interacting Proteins as Modulators of Transcription Factor Function: Implications to Targeted Cancer Therapy.

Jennifer E. Yeh; David A. Frank

The oncogenic transcription factor STAT3 is inappropriately activated in multiple hematopoietic and solid malignancies, in which it drives the expression of genes involved in cell proliferation, differentiation, survival, and angiogenesis. Thus far, strategies to inhibit the function of STAT3 have focused on blocking the function of its activating kinases or sequestering its DNA binding ability. A less well‐explored aspect of STAT3 function is its interaction with other proteins, which can modulate the oncogenic activity of STAT3 via its subcellular localization, DNA binding ability, and recruitment of transcriptional machinery. Herein we summarize what is currently known about STAT3‐interacting proteins and describe the utility of a proteomics‐based approach for successfully identifying and characterizing novel STAT3‐interacting proteins that affect STAT3 transcriptional activity and oncogenic function.


Breast Journal | 1997

Breast cancer genes

Joe W. Gray; Richard M. Neve; Frank McCormick; Jennifer E. Yeh; Koei Chin; Madhu Macrae

Abstract: The identification of familial breast cancer genes heralds an era of directed breast cancer treatment. Currently, two hereditary breast cancer genes have been identified, BRCA‐1 and BRCA‐2. Although accounting for only approximately 5% of all breast cancers, they are being used to identify women with germ‐line alterations that are at high risk of developing breast or ovarian cancer. With the identification of such genes comes a need for consideration of the ethical issues associated with testing. These genes are also being examined from a biochemical standpoint encompassing both their biological roles and biochemical pathways in which they reside. Such studies are likely to lead to novel breast cancer therapies.


Molecular and Cellular Biology | 2015

Impact of the N-Terminal Domain of STAT3 in STAT3-Dependent Transcriptional Activity

Tiancen Hu; Jennifer E. Yeh; Luca Pinello; Jaison Jacob; Srinivas Chakravarthy; Guo-Cheng Yuan; Rajiv Chopra; David A. Frank

ABSTRACT The transcription factor STAT3 is constitutively active in many cancers, where it mediates important biological effects, including cell proliferation, differentiation, survival, and angiogenesis. The N-terminal domain (NTD) of STAT3 performs multiple functions, such as cooperative DNA binding, nuclear translocation, and protein-protein interactions. However, it is unclear which subsets of STAT3 target genes depend on the NTD for transcriptional regulation. To identify such genes, we compared gene expression in STAT3-null mouse embryonic fibroblasts (MEFs) stably expressing wild-type STAT3 or STAT3 from which NTD was deleted. NTD deletion reduced the cytokine-induced expression of specific STAT3 target genes by decreasing STAT3 binding to their regulatory regions. To better understand the potential mechanisms of this effect, we determined the crystal structure of the STAT3 NTD and identified a dimer interface responsible for cooperative DNA binding in vitro. We also observed an Ni2+-mediated oligomer with an as yet unknown biological function. Mutations on both dimer and Ni2+-mediated interfaces affected the cytokine induction of STAT3 target genes. These studies shed light on the role of the NTD in transcriptional regulation by STAT3 and provide a structural template with which to design STAT3 NTD inhibitors with potential therapeutic value.


Neoplasia | 2018

The STAT3 Target Gene TNFRSF1A Modulates the NF-κB Pathway in Breast Cancer Cells

Susana P. Egusquiaguirre; Jennifer E. Yeh; Sarah R. Walker; Suhu Liu; David A. Frank

The transcription factor STAT3 is activated inappropriately in 70% of breast cancers, most commonly in triple negative breast cancer (TNBC). Although the transcriptional function of STAT3 is essential for tumorigenesis, the key target genes regulated by STAT3 in driving tumor pathogenesis have remained unclear. To identify critical STAT3 target genes, we treated TNBC cell lines with two different compounds that block STAT3 transcriptional function, pyrimethamine and PMPTP. We then performed gene expression analysis to identify genes whose expression is strongly down-regulated by both STAT3 inhibitors. Foremost among the down-regulated genes was TNFRSF1A, which encodes a transmembrane receptor for TNFα. We showed that STAT3 binds directly to a regulatory region within the TNFRSF1A gene, and that TNFRSF1A levels are dependent on STAT3 function in both constitutive and cytokine-induced models of STAT3 activation. Furthermore, TNFRSF1A is a major mediator of both basal and TNFα-induced NF-κB activity in breast cancer cells. We extended these findings to primary human breast cancers, in which we found that high TNFRSF1A transcript levels correlated with STAT3 activation. In addition, and consistent with a causal role, increased TNFRSF1A expression was associated with an NF-κB gene expression in signature in breast cancers. Thus, TNFRSF1A is a STAT3 target gene that regulates the NF-κB pathway. These findings reveal a novel functional crosstalk between STAT3 and NF-κB signaling in breast cancer. Furthermore, elevated TNFRSF1A levels may predict a subset of breast tumors that are sensitive to STAT3 transcriptional inhibitors, and may be a biomarker for response to inhibition of this pathway.


Oncotarget | 2016

Deregulation of SOCS5 suppresses dendritic cell function in chronic lymphocytic leukemia

Patricia A. Toniolo; Suhu Liu; Jennifer E. Yeh; Darwin Q. Ye; José Alexandre Marzagão Barbuto; David A. Frank

One cause of morbidity and mortality in chronic lymphocytic leukemia (CLL) is infection, which results from defects in a number of components of the immune system. In particular, dendritic cells (DCs) are functionally defective in patients with CLL. To understand the molecular mechanism for this abnormality, we focused on signal transduction pathways that regulate the function of monocyte-derived dendritic cells (Mo-DCs). Monocytes from CLL patients exhibit high IL-4Rα expression due to the enhanced activation of STAT3. However, IL-4R signaling is decoupled from activation of its downstream mediator STAT6 by enhanced levels of the negative regulator SOCS5. This impairs differentiation of functionally mature DCs leading to decreased expression of HLA-DR and costimulatory molecules, and reduced secretion of pro-inflammatory cytokines in LPS-activated DCs. Moreover, Mo-DCs from CLL patients display a decreased ability to induce pro-inflammatory T-cell responses. IL-10-treatment of monocytes from healthy donors mimics the alteration in signaling observed in CLL patients, through enhanced STAT3-dependent expression of SOCS5. The higher level of SOCS5 inhibits STAT6 activation and leads to defective DC differentiation. These findings indicate that SOCS5 mediates the impaired function of DCs in CLL patients, and has the potential to be a new therapeutic target for reversing cancer-associated immune suppression.

Collaboration


Dive into the Jennifer E. Yeh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea L. Richardson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge