Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer J. Rahn is active.

Publication


Featured researches published by Jennifer J. Rahn.


PLOS ONE | 2011

Bioenergetic Profiling of Zebrafish Embryonic Development

Krista D. Stackley; Craig Beeson; Jennifer J. Rahn; Sherine S. L. Chan

Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility.


Human Molecular Genetics | 2014

Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency

Alok Ghosh; Prachi P. Trivedi; Shrishiv A. Timbalia; Aaron T. Griffin; Jennifer J. Rahn; Sherine S. L. Chan; Vishal M. Gohil

Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx₉CxnCx₁₀C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx₉CxnCx₁₀C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient.


PLOS ONE | 2013

Opa1 Is Required for Proper Mitochondrial Metabolism in Early Development

Jennifer J. Rahn; Krista D. Stackley; Sherine S. L. Chan

Opa1 catalyzes fusion of inner mitochondrial membranes and formation of the cristae. OPA1 mutations in humans lead to autosomal dominant optic atrophy. OPA1 knockout mice lose viability around embryonic day 9 from unknown reasons, indicating that OPA1 is essential for embryonic development. Zebrafish are an attractive model for studying vertebrate development and have been used for many years to describe developmental events that are difficult or impractical to view in mammalian models. In this study, Opa1 was successfully depleted in zebrafish embryos using antisense morpholinos, which resulted in disrupted mitochondrial morphology. Phenotypically, these embryos exhibited abnormal blood circulation and heart defects, as well as small eyes and small pectoral fin buds. Additionally, startle response was reduced and locomotor activity was impaired. Furthermore, Opa1 depletion caused bioenergetic defects, without impairing mitochondrial efficiency. In response to mitochondrial dysfunction, a transient upregulation of the master regulator of mitochondrial biogenesis, pgc1a, was observed. These results not only reveal a new Opa1-associated phenotype in a vertebrate model system, but also further elucidates the absolute requirement of Opa1 for successful vertebrate development.


Kidney International | 2015

Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury

Ryan M. Whitaker; L. Jay Stallons; Joshua E. Kneff; Joseph L. Alge; Jennifer L. Harmon; Jennifer J. Rahn; John M. Arthur; Craig Beeson; Sherine L. Chan; Rick G. Schnellmann

Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by qPCR. Patients were stratified into no AKI, stable AKI and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients, and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 hours of reperfusion. UmtDNA increased in mice after 10-15 minutes of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus, UmtDNA may serve as valuable biomarker for the development of mitochondrial targeted therapies in AKI.


Differentiation | 2015

The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos.

Jennifer E. Bestman; Krista D. Stackley; Jennifer J. Rahn; Tucker Williamson; Sherine S. L. Chan

The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease.


Scientific Reports | 2015

Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

Iryna Bohovych; Mario R. Fernandez; Jennifer J. Rahn; Krista D. Stackley; Jennifer E. Bestman; Annadurai Anandhan; Rodrigo Franco; Steven M. Claypool; Robert E. Lewis; Sherine S. L. Chan; Oleh Khalimonchuk

Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans.


Neuroscience | 2014

Novel Vitamin K analogs suppress seizures in zebrafish and mouse models of epilepsy.

Jennifer J. Rahn; J.E. Bestman; B.J. Josey; E.S. Inks; K.D. Stackley; C.E. Rogers; C.J. Chou; S.S.L. Chan

Epilepsy is a debilitating disease affecting 1-2% of the worlds population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit histone deacetylases (HDACs) using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, 2-benzamido-1 4-naphthoquinone (NQN1), significantly decreased swim activity to levels equal to that of valproic acid, 2-n-propylpentanoic acid (VPA). We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogs. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6Hz) and corneal-kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogs for the prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production.


Nucleic Acids Research | 2015

Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth

Jennifer J. Rahn; Jennifer E. Bestman; Krista D. Stackley; Sherine S. L. Chan

DNA polymerase gamma (POLG) is essential for replication and repair of mitochondrial DNA (mtDNA). Mutations in POLG cause mtDNA instability and a diverse range of poorly understood human diseases. Here, we created a unique Polg animal model, by modifying polg within the critical and highly conserved polymerase domain in zebrafish. polg+/− offspring were indistinguishable from WT siblings in multiple phenotypic and biochemical measures. However, polg−/− mutants developed severe mtDNA depletion by one week post-fertilization (wpf), developed slowly and had regenerative defects, yet surprisingly survived up to 4 wpf. An in vivo mtDNA polymerase activity assay utilizing ethidium bromide (EtBr) to deplete mtDNA, showed that polg+/− and WT zebrafish fully recover mtDNA content two weeks post-EtBr removal. EtBr further reduced already low levels of mtDNA in polg−/− animals, but mtDNA content did not recover following release from EtBr. Despite significantly decreased respiration that corresponded with tissue-specific levels of mtDNA, polg−/− animals had WT levels of ATP and no increase in lactate. This zebrafish model of mitochondrial disease now provides unique opportunities for studying mtDNA instability from multiple angles, as polg−/− mutants can survive to juvenile stage, rather than lose viability in embryogenesis as seen in Polg mutant mice.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Elesclomol restores mitochondrial function in genetic models of copper deficiency

Shivatheja Soma; Andrew J. Latimer; Haarin Chun; Alison C. Vicary; Shrishiv A. Timbalia; Aren Boulet; Jennifer J. Rahn; Sherine S. L. Chan; Scot C. Leary; Byung-Eun Kim; Jonathan D. Gitlin; Vishal M. Gohil

Significance Inherited pathogenic mutations in genes required for copper delivery to cytochrome c oxidase (CcO) perturb mitochondrial energy metabolism and result in fatal mitochondrial disease. A prior attempt to treat human patients with these mutations by direct copper supplementation was not successful, possibly because of inefficient copper delivery to the mitochondria. We performed a targeted search to identify compounds that can efficiently transport copper across biological membranes and identified elesclomol (ES), an investigational anticancer drug, as the most efficient copper delivery agent. ES rescues CcO function in yeast, zebrafish, and mammalian models of copper deficiency by increasing cellular and mitochondrial copper content. Thus, our study offers a possibility of repurposing this anticancer drug for the treatment of disorders of copper metabolism. Copper is an essential cofactor of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Inherited loss-of-function mutations in several genes encoding proteins required for copper delivery to CcO result in diminished CcO activity and severe pathologic conditions in affected infants. Copper supplementation restores CcO function in patient cells with mutations in two of these genes, COA6 and SCO2, suggesting a potential therapeutic approach. However, direct copper supplementation has not been therapeutically effective in human patients, underscoring the need to identify highly efficient copper transporting pharmacological agents. By using a candidate-based approach, we identified an investigational anticancer drug, elesclomol (ES), that rescues respiratory defects of COA6-deficient yeast cells by increasing mitochondrial copper content and restoring CcO activity. ES also rescues respiratory defects in other yeast mutants of copper metabolism, suggesting a broader applicability. Low nanomolar concentrations of ES reinstate copper-containing subunits of CcO in a zebrafish model of copper deficiency and in a series of copper-deficient mammalian cells, including those derived from a patient with SCO2 mutations. These findings reveal that ES can restore intracellular copper homeostasis by mimicking the function of missing transporters and chaperones of copper, and may have potential in treating human disorders of copper metabolism.


Archive | 2013

COMPOSITIONS AND METHODS FOR TREATING NEUROLOGICAL DISEASES OR INJURY

C. James Chou; Sherine S. Chan; Jennifer J. Rahn; Benjamin Josey

Collaboration


Dive into the Jennifer J. Rahn's collaboration.

Top Co-Authors

Avatar

Sherine S. L. Chan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Krista D. Stackley

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jennifer E. Bestman

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mario R. Fernandez

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Oleh Khalimonchuk

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Robert E. Lewis

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Annadurai Anandhan

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Craig Beeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Franco

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge