Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Beeson is active.

Publication


Featured researches published by Craig Beeson.


Immunity | 1998

Initiation of Signal Transduction through the T Cell Receptor Requires the Multivalent Engagement of Peptide/MHC Ligands

J. Jay Boniface; Joshua D. Rabinowitz; Christoph Wülfing; Johannes Hampl; Ziv Reich; John D. Altman; Ronald M. Kantor; Craig Beeson; Harden M. McConnell; Mark M. Davis

While much is known about intracellular signaling events in T cells when T cell receptors (TCRs) are engaged, the mechanism by which signaling is initiated is unclear. We have constructed defined oligomers of soluble antigen-major histocompatibility complex (MHC) molecules, the natural ligands for the TCR. Using these to stimulate specific T cells in vitro, we find that agonist peptide/MHC ligands are nonstimulatory as monomers and minimally stimulatory as dimers. Similarly, a partial-agonist ligand is very weakly active as a tetramer. In contrast, trimeric or tetrameric agonist ligands that engage multiple TCRs for a sustained duration are potent stimuli. Ligand-driven formation of TCR clusters seems required for effective activation and helps to explain the specificity and sensitivity of T cells.


Drug Discovery Today | 2008

Advances in measuring cellular bioenergetics using extracellular flux

David A. Ferrick; Andy Neilson; Craig Beeson

Cell-based assays have become a favored format for drug discovery because living cells have relevant biological complexity and can be highly multiplexed to screen for drugs and their mechanisms. In response to a changing extracellular environment, disease and/or drug exposure, cells remodel bioenergetic pathways in a matter of minutes to drive phenotypic changes associated with these perturbations. By measuring the extracellular flux (XF), that is the changes in oxygen and proton concentrations in the media surrounding cells, one can simultaneously determine their relative state of aerobic and glycolytic metabolism, respectively. In addition, XF is time-resolved and non-invasive, making it an attractive format for studying drug effects in vitro.


The EMBO Journal | 2009

Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity.

Juxiang Cao; Jennifer Schulte; Alexander Knight; Nick R. Leslie; Agnieszka Zagozdzon; Roderick T. Bronson; Yefim Manevich; Craig Beeson; Carola A. Neumann

It is widely accepted that reactive oxygen species (ROS) promote tumorigenesis. However, the exact mechanisms are still unclear. As mice lacking the peroxidase peroxiredoxin1 (Prdx1) produce more cellular ROS and die prematurely of cancer, they offer an ideal model system to study ROS‐induced tumorigenesis. Prdx1 ablation increased the susceptibility to Ras‐induced breast cancer. We, therefore, investigated the role of Prdx1 in regulating oncogenic Ras effector pathways. We found Akt hyperactive in fibroblasts and mammary epithelial cells lacking Prdx1. Investigating the nature of such elevated Akt activation established a novel role for Prdx1 as a safeguard for the lipid phosphatase activity of PTEN, which is essential for its tumour suppressive function. We found binding of the peroxidase Prdx1 to PTEN essential for protecting PTEN from oxidation‐induced inactivation. Along those lines, Prdx1 tumour suppression of Ras‐ or ErbB‐2‐induced transformation was mediated mainly via PTEN.


Immunity | 1998

Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein.

Cassie J Harrington; Angela Paez; Tim Hunkapiller; Valerie Mannikko; Thea Brabb; MaryEllen Ahearn; Craig Beeson; Joan Goverman

Experimental allergic encephalomyelitis (EAE) is induced by T cell-mediated immunity to central nervous system antigens. In H-2u mice, EAE is mediated primarily by T cells specific for residues 1-11 of myelin basic protein (MBP). We demonstrate that differential tolerance to MBP1-11 versus epitopes in MBP121-150 is induced by expression of endogenous MBP, reflecting extreme differences in stability of peptide/MHC complexes. The diverse MBP121-150-specific TCR repertoire can be divided into three fine specificity groups. Two groups were identified in wild-type mice despite extensive tolerance, but the third group was not detected. Activated MBP121-150-specific T cells induce EAE in wild-type mice. Thus, encephalitogenic T cells that escape tolerance either recognize short-lived peptide/MHC complexes or express TCRs with unique specificities for stable complexes.


Immunity | 1996

Altered T cell receptor ligands trigger a subset of early T cell signals.

Joshua D. Rabinowitz; Craig Beeson; Christoph Wülfing; Keri Tate; Paul M. Allen; Mark M. Davis; Harden M. McConnell

TCR ligands are complexes of peptides and MHC proteins on the surfaces of APCs. Some of these ligands cause T cell proliferation (agonists), while others block it (antagonists). We compared the acid release, calcium flux, and proliferation response of helper T cells to a variety of ligands. We found that all agonist ligands but not most antagonist ligands trigger acid release, a general indicator of early cellular activation. Only a subset of ligands triggering acid release cause sustained calcium flux, and only a subset of these ligands cause T cell proliferation. Antagonist ligands and anti-CD4 antibodies both effectively block T cell proliferation. However, significantly greater antagonist ligand or antibody concentrations are required to block acid release and initial calcium influx. These data demonstrate a hierarchy of early T cell signaling steps and show that altered TCR ligands can initiate some steps while blocking the completion of others.


Cancer Research | 2009

Hyaluronan, CD44, and Emmprin Regulate Lactate Efflux and Membrane Localization of Monocarboxylate Transporters in Human Breast Carcinoma Cells

Mark G. Slomiany; G. Daniel Grass; Angela D. Robertson; Xiao Y. Yang; Bernard L. Maria; Craig Beeson; Bryan P. Toole

Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin) is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells.


Analytical Biochemistry | 2010

A high-throughput respirometric assay for mitochondrial biogenesis and toxicity

Craig Beeson; Gyda C. Beeson; Rick G. Schnellmann

Mitochondria are a common target of toxicity for drugs and other chemicals and result in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality, and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial biogenesis or toxicity are inadequate because cultured cell lines are highly glycolytic with minimal aerobic metabolism and altered mitochondrial physiology. In addition, there are no high-throughput real-time assays that assess mitochondrial function. We adapted primary cultures of renal proximal tubular cells (RPTCs) that exhibit in vivo levels of aerobic metabolism, are not glycolytic, and retain higher levels of differentiated functions and used the Seahorse Bioscience analyzer to measure mitochondrial function in real time in multiwell plates. Using uncoupled respiration as a marker of electron transport chain (ETC) integrity, the nephrotoxicants cisplatin, HgCl(2), and gentamicin exhibited mitochondrial toxicity prior to decreases in basal respiration and cell death. Conversely, using FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone)-uncoupled respiration as a marker of maximal ETC activity, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), SRT1720, resveratrol, daidzein, and metformin produced mitochondrial biogenesis in RPTCs. The merger of the RPTC model and multiwell respirometry results in a single high-throughput assay to measure mitochondrial biogenesis and toxicity and nephrotoxic potential.


American Journal of Physiology-cell Physiology | 2010

Bioenergetic characterization of mouse podocytes

Yoshifusa Abe; Toru Sakairi; Hiroshi Kajiyama; Shashi Shrivastav; Craig Beeson; Jeffrey B. Kopp

Mitochondrial dysfunction contributes to podocyte injury, but normal podocyte bioenergetics have not been characterized. We measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR), using a transformed mouse podocyte cell line and the Seahorse Bioscience XF24 Extracellular Flux Analyzer. Basal OCR and ECAR were 55.2 +/- 9.9 pmol/min and 3.1 +/- 1.9 milli-pH units/min, respectively. The complex V inhibitor oligomycin reduced OCR to approximately 45% of baseline rates, indicating that approximately 55% of cellular oxygen consumption was coupled to ATP synthesis. Rotenone, a complex I inhibitor, reduced OCR to approximately 25% of the baseline rates, suggesting that mitochondrial respiration accounted for approximately 75% of the total cellular respiration. Thus approximately 75% of mitochondrial respiration was coupled to ATP synthesis and approximately 25% was accounted for by proton leak. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), which uncouples electron transport from ATP generation, increased OCR and ECAR to approximately 360% and 840% of control levels. FCCP plus rotenone reduced ATP content by 60%, the glycolysis inhibitor 2-deoxyglucose reduced ATP by 35%, and 2-deoxyglucose in combination with FCCP or rotenone reduced ATP by >85%. The lactate dehydrogenase inhibitor oxamate and 2-deoxyglucose did not reduce ECAR, and 2-deoxyglucose had no effect on OCR, although 2-deoxyglucose reduced ATP content by 25%. Mitochondrial uncoupling induced by FCCP was associated with increased OCR with certain substrates, including lactate, glucose, pyruvate, and palmitate. Replication of these experiments in primary mouse podocytes yielded similar data. We conclude that mitochondria play the primary role in maintaining podocyte energy homeostasis, while glycolysis makes a lesser contribution.


PLOS ONE | 2011

Bioenergetic Profiling of Zebrafish Embryonic Development

Krista D. Stackley; Craig Beeson; Jennifer J. Rahn; Sherine S. L. Chan

Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility.


Journal of Bioenergetics and Biomembranes | 2012

Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform.

Sashi Nadanaciva; Payal Rana; Gyda C. Beeson; Denise Chen; David A. Ferrick; Craig Beeson; Yvonne Will

High-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis. Sixteen therapeutic agents were screened in HepG2 cells for mitochondrial effects. Four of these compounds, thiazolidinediones, were also tested in primary feline cardiomyocytes for cell-type specific effects. We show that the XF96 platform is a robust, sensitive system for analyzing drug-induced mitochondrial impairment in whole cells. We identified changes in cellular respiration and acidification upon addition of therapeutic agents reported to have a mitochondrial effect. Furthermore, we show that respiration and acidification changes upon addition of the thiazoldinediones were cell-type specific, with the rank order of mitochondrial impairment in whole cells being in accord with the known adverse effects of these drugs.

Collaboration


Dive into the Craig Beeson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyda C. Beeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan Perron

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Baerbel Rohrer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren P. Wills

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea J. Sant

University of Rochester Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge