Jennifer J. Smith
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer J. Smith.
Nature Reviews Molecular Cell Biology | 2013
Jennifer J. Smith; John D. Aitchison
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Journal of Cell Biology | 2002
Jennifer J. Smith; Marcello Marelli; Rowan H. Christmas; Franco J. Vizeacoumar; David J. Dilworth; Trey Ideker; Timothy Galitski; Krassen Dimitrov; Richard A. Rachubinski; John D. Aitchison
Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.
Journal of Cell Biology | 2004
Marcello Marelli; Jennifer J. Smith; Sunhee Jung; Eugene C. Yi; Alexey I. Nesvizhskii; Rowan H. Christmas; Ramsey A. Saleem; Yuen Yi C. Tam; Andrei Fagarasanu; David R. Goodlett; Ruedi Aebersold; Richard A. Rachubinski; John D. Aitchison
We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis.
Methods of Molecular Biology | 2009
Sarah A. Killcoyne; Gregory W. Carter; Jennifer J. Smith; John Boyle
Cytoscape is a general network visualization, data integration, and analysis software package. Its development and use has been focused on the modeling requirements of systems biology, though it has been used in other fields. Cytoscapes flexibility has encouraged many users to adopt it and adapt it to their own research by using the plugin framework offered to specialize data analysis, data integration, or visualization. Plugins represent collections of community-contributed functionality and can be used to dynamically extend Cytoscape functionality. This community of users and developers has worked together since Cytoscapes initial release to improve the basic project through contributions to the core code and public offerings of plugin modules. This chapter discusses what Cytoscape does, why it was developed, and the extensions numerous groups have made available to the public. It also describes the development of a plugin used to investigate a particular research question in systems biology and walks through an example analysis using Cytoscape.
Journal of Cell Biology | 2005
David J. Dilworth; Alan J. Tackett; Richard S. Rogers; Eugene C. Yi; Rowan H. Christmas; Jennifer J. Smith; Andrew F. Siegel; Brian T. Chait; Richard W. Wozniak; John D. Aitchison
Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.
Nature Genetics | 2008
Jacques Behmoaras; Gurjeet Bhangal; Jennifer J. Smith; Kylie McDonald; Brenda E. Mutch; Ping Chin Lai; Jan Domin; Alan D. Salama; Brian M. J. Foxwell; Charles D. Pusey; H. Terence Cook; Timothy J. Aitman
Crescentic glomerulonephritis is an important cause of human kidney failure for which the underlying molecular basis is largely unknown. In previous studies, we mapped several susceptibility loci, Crgn1–Crgn7, for crescentic glomerulonephritis in the Wistar Kyoto (WKY) rat. Here we show by combined congenic, linkage and microarray studies that the activator protein-1 (AP-1) transcription factor JunD is a major determinant of macrophage activity and is associated with glomerulonephritis susceptibility. Introgression of Crgn2 from the nonsusceptible Lewis strain onto the WKY background leads to significant reductions in crescent formation, macrophage infiltration, Fc receptor–mediated macrophage activation and cytokine production. Haplotype analysis restricted the Crgn2 linkage interval to a 430-kb interval containing Jund, which is markedly overexpressed in WKY macrophages and glomeruli. Jund knockdown in rat and human primary macrophages led to significantly reduced macrophage activity and cytokine secretion, indicating conservation of JunD function in macrophage activation in rats and humans and suggesting in vivo inhibition of Jund as a possible new therapeutic strategy for diseases characterized by inflammation and macrophage activation.
Nature Genetics | 2006
Stephen A. Ramsey; Jennifer J. Smith; David Orrell; Marcello Marelli; Timothy W. Petersen; Pedro de Atauri; Hamid Bolouri; John D. Aitchison
Transcriptional noise is known to be an important cause of cellular heterogeneity and phenotypic variation. The extent to which molecular interaction networks may have evolved to either filter or exploit transcriptional noise is a much debated question. The yeast genetic network regulating galactose metabolism involves two proteins, Gal3p and Gal80p, that feed back positively and negatively, respectively, on GAL gene expression. Using kinetic modeling and experimental validation, we demonstrate that these feedback interactions together are important for (i) controlling the cell-to-cell variability of GAL gene expression and (ii) ensuring that cells rapidly switch to an induced state for galactose uptake.
Molecular and Cellular Biology | 2009
Yakun Wan; Ramsey A. Saleem; Alexander V. Ratushny; Oriol Roda; Jennifer J. Smith; Chan Hsien Lin; Jung Hsien Chiang; John D. Aitchison
ABSTRACT The histone variant H2A.Z (Htz1p) has been implicated in transcriptional regulation in numerous organisms, including Saccharomyces cerevisiae. Genome-wide transcriptome profiling and chromatin immunoprecipitation studies identified a role for Htz1p in the rapid and robust activation of many oleate-responsive genes encoding peroxisomal proteins, in particular POT1, POX1, FOX2, and CTA1. The Swr1p-, Gcn5p-, and Chz1p-dependent association of Htz1p with these promoters in their repressed states appears to establish an epigenetic marker for the rapid and strong expression of these highly inducible promoters. Isw2p also plays a role in establishing the nucleosome state of these promoters and associates stably in the absence of Htz1p. An analysis of the nucleosome dynamics and Htz1p association with these promoters suggests a complex mechanism in which Htz1p-containing nucleosomes at fatty acid-responsive promoters are disassembled upon initial exposure to oleic acid leading to the loss of Htz1p from the promoter. These nucleosomes reassemble at later stages of gene expression. While these new nucleosomes do not incorporate Htz1p, the initial presence of Htz1p appears to mark the promoter for sustained gene expression and the recruitment of TATA-binding protein.
Molecular Systems Biology | 2007
Jennifer J. Smith; Stephen A. Ramsey; Marcello Marelli; Bruz Marzolf; Daehee Hwang; Ramsey A. Saleem; Richard A. Rachubinski; John D. Aitchison
In transcriptional regulatory networks, the coincident binding of a combination of factors to regulate a gene implies the existence of complex mechanisms to control both the gene expression profile and specificity of the response. Unraveling this complexity is a major challenge to biologists. Here, a novel network topology‐based clustering approach was applied to condition‐specific genome‐wide chromatin localization and expression data to characterize a dynamic transcriptional regulatory network responsive to the fatty acid oleate. A network of four (predicted) regulators of the response (Oaf1p, Pip2p, Adr1p and Oaf3p) was investigated. By analyzing trends in the network structure, we found that two groups of multi‐input motifs form in response to oleate, each controlling distinct functional classes of genes. This functionality is contributed in part by Oaf1p, which is a component of both types of multi‐input motifs and has two different regulatory activities depending on its binding context. The dynamic cooperation between Oaf1p and Pip2p appears to temporally synchronize the two different responses. Together, these data suggest a network mechanism involving dynamic combinatorial control for coordinating transcriptional responses.
Journal of Cell Biology | 2008
Ramsey A. Saleem; Barbara Knoblach; Fred D. Mast; Jennifer J. Smith; John Boyle; C. Melissa Dobson; Rose Long-O'Donnell; Richard A. Rachubinski; John D. Aitchison
Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome functionality. We find that distinct signaling networks involving glucose-mediated gene repression, derepression, oleate-mediated induction, and peroxisome formation promote stages of the biogenesis pathway. Additionally, separate classes of signaling proteins are responsible for the regulation of peroxisome number and size. These signaling networks specify the requirements of early and late events of peroxisome biogenesis. Among the numerous signaling proteins involved, Pho85p is exceptional, with functional involvements in both gene expression and peroxisome formation. Our study represents the first global study of signaling networks regulating the biogenesis of an organelle.