Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Dilworth is active.

Publication


Featured researches published by David J. Dilworth.


Journal of Cell Biology | 2002

Transcriptome profiling to identify genes involved in peroxisome assembly and function.

Jennifer J. Smith; Marcello Marelli; Rowan H. Christmas; Franco J. Vizeacoumar; David J. Dilworth; Trey Ideker; Timothy Galitski; Krassen Dimitrov; Richard A. Rachubinski; John D. Aitchison

Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.


Journal of Cell Biology | 2005

Proteomic and genomic characterization of chromatin complexes at a boundary

Alan J. Tackett; David J. Dilworth; Megan J. Davey; Mike O'Donnell; John D. Aitchison; Michael P. Rout; Brian T. Chait

We have dissected specialized assemblies on the Saccharomyces cerevisiae genome that help define and preserve the boundaries that separate silent and active chromatin. These assemblies contain characteristic stretches of DNA that flank particular regions of silent chromatin, as well as five distinctively modified histones and a set of protein complexes. The complexes consist of at least 15 chromatin-associated proteins, including DNA pol ɛ, the Isw2-Itc1 and Top2 chromatin remodeling proteins, the Sas3-Spt16 chromatin modifying complex, and Yta7, a bromodomain-containing AAA ATPase. We show that these complexes are important for the faithful maintenance of an established boundary, as disruption of the complexes results in specific, anomalous alterations of the silent and active epigenetic states.


Journal of Cell Biology | 2005

The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control

David J. Dilworth; Alan J. Tackett; Richard S. Rogers; Eugene C. Yi; Rowan H. Christmas; Jennifer J. Smith; Andrew F. Siegel; Brian T. Chait; Richard W. Wozniak; John D. Aitchison

Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.


Molecular and Cellular Biology | 2003

Intersection of the Kap123p-Mediated Nuclear Import and Ribosome Export Pathways

Yaroslav Sydorskyy; David J. Dilworth; Eugene C. Yi; Dave R. Goodlett; Richard W. Wozniak; John D. Aitchison

ABSTRACT Kap123p is a yeast β-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123ps role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a ΔRAI1-induced decrease in the overall biogenesis efficiency.


Nature Methods | 2015

Rapid, optimized interactomic screening

Zhanna Hakhverdyan; Michal Domanski; Loren E. Hough; Asha A. Oroskar; Anil Oroskar; Sarah Keegan; David J. Dilworth; Kelly R. Molloy; Vadim Sherman; John D. Aitchison; David Fenyö; Brian T. Chait; Torben Heick Jensen; Michael P. Rout; John LaCava

We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screening method that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles for even well-studied proteins. Our approach is robust, economical and automatable, providing inroads to the rigorous, systematic dissection of cellular interactomes.


Molecular & Cellular Proteomics | 2010

Integrated Phosphoproteomics Analysis of a Signaling Network Governing Nutrient Response and Peroxisome Induction

Ramsey A. Saleem; Richard S. Rogers; Alexander V. Ratushny; David J. Dilworth; Paul T. Shannon; David Shteynberg; Yakun Wan; Robert L. Moritz; Alexey I. Nesvizhskii; Richard A. Rachubinski; John D. Aitchison

Phosphorylation of proteins is a key posttranslational modification in cellular signaling, regulating many aspects of cellular responses. We used a quantitative, integrated, phosphoproteomics approach to characterize the cellular responses of the yeast Saccharomyces cerevisiae to the fatty acid oleic acid, a molecule with broad human health implications and a potent inducer of peroxisomes. A combination of cryolysis and urea solubilization was used to minimize the opportunity for reorientation of the phosphoproteome, and hydrophilic interaction liquid chromatography and IMAC chemistries were used to fractionate and enrich for phosphopeptides. Using these approaches, numerous phosphorylated peptides specific to oleate-induced and glucose-repressed conditions were identified and mapped to known signaling pathways. These include several transcription factors, two of which, Pip2p and Cst6p, must be phosphorylated for the normal transcriptional response of fatty acid-responsive loci encoding peroxisomal proteins. The phosphoproteome data were integrated with results from genome-wide assays studying the effects of signaling molecule deletions and known protein-protein interactions to generate a putative fatty acid-responsive signaling network. In this network, the most highly connected nodes are those with the largest effects on cellular responses to oleic acid. These properties are consistent with a scale-free topology, demonstrating that scale-free properties are conserved in condition-specific networks.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Systematic measurement of transcription factor-DNA interactions by targeted mass spectrometry identifies candidate gene regulatory proteins.

Hamid Mirzaei; Theo Knijnenburg; Bong Kim; Max Robinson; Paola Picotti; Gregory W. Carter; Song Li; David J. Dilworth; Jimmy K. Eng; John D. Aitchison; Ilya Shmulevich; Timothy Galitski; Ruedi Aebersold; Jeffrey A. Ranish

Regulation of gene expression involves the orchestrated interaction of a large number of proteins with transcriptional regulatory elements in the context of chromatin. Our understanding of gene regulation is limited by the lack of a protein measurement technology that can systematically detect and quantify the ensemble of proteins associated with the transcriptional regulatory elements of specific genes. Here, we introduce a set of selected reaction monitoring (SRM) assays for the systematic measurement of 464 proteins with known or suspected roles in transcriptional regulation at RNA polymerase II transcribed promoters in Saccharomyces cerevisiae. Measurement of these proteins in nuclear extracts by SRM permitted the reproducible quantification of 42% of the proteins over a wide range of abundances. By deploying the assay to systematically identify DNA binding transcriptional regulators that interact with the environmentally regulated FLO11 promoter in cell extracts, we identified 15 regulators that bound specifically to distinct regions along ∼600 bp of the regulatory sequence. Importantly, the dataset includes a number of regulators that have been shown to either control FLO11 expression or localize to these regulatory regions in vivo. We further validated the utility of the approach by demonstrating that two of the SRM-identified factors, Mot3 and Azf1, are required for proper FLO11 expression. These results demonstrate the utility of SRM-based targeted proteomics to guide the identification of gene-specific transcriptional regulators.


Biochemical Journal | 2005

Nop53p is a novel nucleolar 60S ribosomal subunit biogenesis protein

Yaroslav Sydorskyy; David J. Dilworth; Brendan Halloran; Eugene C. Yi; Taras Makhnevych; Richard W. Wozniak; John D. Aitchison

Ribosome biogenesis in Saccharomyces cerevisiae occurs primarily in a specialized nuclear compartment termed the nucleolus within which the rRNA genes are transcribed by RNA polymerase I into a large 35 S rRNA precursor. The ensuing association/dissociation and catalytic activity of numerous trans-acting protein factors, RNAs and ribosomal proteins ultimately leads to the maturation of the precursor rRNAs into 25, 5.8 and 18 S rRNAs and the formation of mature cytoplasmic 40 and 60 S ribosomal subunits. Although many components involved in ribosome biogenesis have been identified, our understanding of this essential cellular process remains limited. In the present study we demonstrate a crucial role for the previously uncharacterized nucleolar protein Nop53p (Ypl146p) in ribosome biogenesis. Specifically, Nop53p appears to be most important for biogenesis of the 60 S subunit. It physically interacts with rRNA processing factors, notably Cbf5p and Nop2p, and co-fractionates specifically with pre-60 S particles on sucrose gradients. Deletion or mutations within NOP53 cause significant growth defects and display significant 60 S subunit deficiencies, an imbalance in the 40 S:60 S ratio, as revealed by polysome profiling, and defects in progression beyond the 27 S stage of 25 S rRNA maturation during 60 S biogenesis.


PLOS ONE | 2010

Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

Ramsey A. Saleem; Rose Long-O'Donnell; David J. Dilworth; Abraham M. Armstrong; Arvind P. Jamakhandi; Yakun Wan; Theo Knijnenburg; Antti Niemistö; John P. Boyle; Richard A. Rachubinski; Ilya Shmulevich; John D. Aitchison

Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.


Molecular & Cellular Proteomics | 2013

Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance

Sunhee Jung; Jennifer J. Smith; Priska D. von Haller; David J. Dilworth; Katherine Sitko; Leslie R. Miller; Ramsey A. Saleem; David R. Goodlett; John D. Aitchison

Cellular control of protein activities by modulation of their abundance or compartmentalization is not easily measured on a large scale. We developed and applied a method to globally interrogate these processes that is widely useful for systems-level analyses of dynamic cellular responses in many cell types. The approach involves subcellular fractionation followed by comprehensive proteomic analysis of the fractions, which is enabled by a data-independent acquisition mass spectrometry approach that samples every available mass to charge channel systematically to maximize sensitivity. Next, various fraction-enrichment ratios are measured for all detected proteins across different environmental conditions and used to group proteins into clusters reflecting changes in compartmentalization and relative conditional abundance. Application of the approach to characterize the response of yeast proteins to fatty acid exposure revealed dynamics of peroxisomes and novel dynamics of MCC/eisosomes, specialized plasma membrane domains comprised of membrane compartment occupied by Can1 (MCC) and eisosome subdomains. It also led to the identification of Fat3, a fatty acid transport protein of the plasma membrane, previously annotated as Ykl187.

Collaboration


Dive into the David J. Dilworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene C. Yi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Tackett

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Hamid Mirzaei

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge