Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer J. Westendorf is active.

Publication


Featured researches published by Jennifer J. Westendorf.


Stem Cells | 2007

Sarcoma derived from cultured mesenchymal stem cells

Jakub Tolar; Alma J. Nauta; Mark J. Osborn; Angela Mortari; Ron T. McElmurry; Scott Bell; Lily Xia; Ning Zhou; Megan Riddle; Tania M. Schroeder; Jennifer J. Westendorf; R. Scott McIvor; Pancras C.W. Hogendoorn; Karoly Szuhai; LeAnn Oseth; Betsy Hirsch; Stephen R. Yant; Mark A. Kay; Alexandra Peister; Darwin J. Prockop; Willem E. Fibbe; Bruce R. Blazar

To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole‐body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain‐specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon‐related genetic abnormality, and p53 was not overexpressed. Infusion of MSC‐derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate

Larry Pederson; Ming Ruan; Jennifer J. Westendorf; Sundeep Khosla; Merry Jo Oursler

Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways.


Journal of Clinical Investigation | 2008

Building bone to reverse osteoporosis and repair fractures

Sundeep Khosla; Jennifer J. Westendorf; Merry Jo Oursler

An important, unfilled clinical need is the development of new approaches to improve fracture healing and to treat osteoporosis by increasing bone mass. Recombinant forms of bone morphogenetic protein 2 (BMP2) and BMP7 are FDA approved to promote spinal fusion and fracture healing, respectively, and the first FDA-approved anabolic drug for osteoporosis, parathyroid hormone, increases bone mass when administered intermittently but can only be given to patients in the US for two years. As we discuss here, the tremendous explosion over the last two decades in our fundamental understanding of the mechanisms of bone remodeling has led to the prospect of mechanism-based anabolic therapies for bone disorders.


Molecular and Cellular Biology | 2002

Runx2 (Cbfa1, AML-3) Interacts with Histone Deacetylase 6 and Represses the p21 CIP1/WAF1 Promoter

Jennifer J. Westendorf; S. Kaleem Zaidi; Jonathan E. Cascino; Rachel A. Kahler; Andre J. van Wijnen; Jane B. Lian; Minoru Yoshida; Gary S. Stein; Xiaodong Li

ABSTRACT Runx2 (Cbfa1, AML-3) is multifunctional transcription factor that is essential for osteoblast development. Runx2 binds specific DNA sequences and interacts with transcriptional coactivators and corepressors to either activate or repress transcription of tissue-specific genes. In this study, the p21 CIP/WAF1 promoter was identified as a repressible target of Runx2. A carboxy-terminal repression domain distinct from the well-characterized TLE/Groucho-binding domain contributed to Runx2-mediated p21 repression. This carboxy-terminal domain was sufficient to repress a heterologous GAL reporter. The repressive activity of this domain was sensitive to the histone deacetylase inhibitor trichostatin A but not to trapoxin B. HDAC6, which is insensitive to trapoxin B, specifically interacted with the carboxy terminus of Runx2. The HDAC6 interaction domain of Runx2 was mapped to a region overlapping the nuclear matrix-targeting signal. The Runx2 carboxy terminus was necessary for recruitment of HDAC6 from the cytoplasm to chromatin. HDAC6 also colocalized and coimmunoprecipitated with the nuclear matrix-associated protein Runx2 in osteoblasts. Finally, we show that HDAC6 is expressed in differentiating osteoblasts and that the Runx2 carboxy terminus is necessary for maximal repression of the p21 promoter in preosteoblasts. These data identify Runx2 as the first transcription factor to interact with HDAC6 and suggest that HDAC6 may bind to Runx2 in differentiating osteoblasts to regulate tissue-specific gene expression.


Journal of Biological Chemistry | 2003

Lymphoid Enhancer Factor-1 and β-Catenin Inhibit Runx2-dependent Transcriptional Activation of the Osteocalcin Promoter

Rachel A. Kahler; Jennifer J. Westendorf

Functional control of the transcription factor Runx2 is crucial for normal bone formation. Runx2 is detectable throughout osteoblast development and maturation and temporally regulates several bone-specific genes. In this study, we identified a novel post-translational mechanism regulating Runx2-dependent activation of the osteocalcin promoter. A functional binding site for the high mobility group protein lymphoid enhancer-binding factor 1 (LEF1) was found adjacent to the proximal Runx2-binding site in the osteocalcin promoter. In transcription assays, LEF1 repressed Runx2-induced activation of the mouse osteocalcin 2 promoter in several osteoblast lineage cell lines. Mutations in the LEF1-binding site increased the basal activity of the osteocalcin promoter; however, the LEF1 recognition site in the osteocalcin promoter was surprisingly not required for LEF1 repression. A novel interaction between the DNA-binding domains of Runx2 and LEF1 was identified and found crucial for LEF1-mediated repression of Runx2. LEF1 is a nuclear effector of the Wnt/LRP5/β-catenin signaling pathway, which is also essential for osteoblast proliferation and normal skeletal development. A constitutively active β-catenin enhanced LEF1-dependent repression of Runx2. These data identify a novel mechanism of regulating Runx2 activity in osteoblasts and link Runx2 transcriptional activity to β-catenin signaling.


Expert Opinion on Therapeutic Targets | 2009

Wnt signaling as a therapeutic target for bone diseases

Luke H. Hoeppner; Frank J. Secreto; Jennifer J. Westendorf

Background: There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a regulator of bone formation and regeneration. Objective: To review the molecular basis for Wnt pathway modulation and discuss strategies that target it and improve bone mass. Methods: Data in peer-reviewed reports and meeting abstracts are discussed. Results/conclusions: Neutralizing inhibitors of Wnt signaling have emerged as promising strategies. Small-molecule inhibitors of glycogen synthase kinase 3β increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs but are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety.


Journal of Bone and Mineral Research | 2005

Histone deacetylase inhibitors promote osteoblast maturation

Tania M. Schroeder; Jennifer J. Westendorf

HDIs are potential therapeutic agents for cancer and neurological diseases because of their abilities to alter gene expression, induce growth arrest or apoptosis of tumors cells, and stimulate differentiation. In this report, we show that several HDIs promote osteoblast maturation in vitro and in calvarial organ cultures.


Mayo Clinic proceedings | 2009

Mesenchymal stem cells for bone repair and metabolic bone diseases.

Anita H. Undale; Jennifer J. Westendorf; Michael J. Yaszemski; Sundeep Khosla

Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.


Journal of Bone and Mineral Research | 2007

Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner

Eric D. Jensen; Tania M. Schroeder; Jaclyn Bailey; Rajaram Gopalakrishnan; Jennifer J. Westendorf

HDAC7 associates with Runx2 and represses Runx2 transcriptional activity in a deacetylase‐independent manner. HDAC7 suppression accelerates osteoblast maturation. Thus, HDAC7 is a novel Runx2 co‐repressor that regulates osteoblast differentiation.


Current Osteoporosis Reports | 2013

MicroRNA Functions in Osteogenesis and Dysfunctions in Osteoporosis

Andre J. Van Wijnen; Jeroen van de Peppel; Johannes P.T.M. van Leeuwen; Jane B. Lian; Gary S. Stein; Jennifer J. Westendorf; Merry Jo Oursler; Hee-Jeong Im; Hanna Taipaleenmäki; Eric Hesse; Scott M. Riester; Sanjeev Kakar

MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression that control osteoblast mediated bone formation and osteoclast-related bone remodeling. Deregulation of miRNA mediated mechanisms is emerging as an important pathological factor in bone degeneration (eg, osteoporosis) and other bone-related diseases. MiRNAs are intriguing regulatory molecules that are networked with cell signaling pathways and intricate transcriptional programs through ingenuous circuits with remarkably simple logic. This overview examines key principles by which miRNAs control differentiation of osteoblasts as they evolve from mesenchymal stromal cells during osteogenesis, or of osteoclasts as they originate from monocytic precursors in the hematopoietic lineage during osteoclastogenesis. Of particular note are miRNAs that are temporally upregulated during osteoblastogenesis (eg, miR-218) or osteoclastogenesis (eg, miR-148a). Each miRNA stimulates differentiation by suppressing inhibitory signaling pathways (‘double-negative’ regulation). The excitement surrounding miRNAs in bone biology stems from the prominent effects that individual miRNAs can have on biological transitions during differentiation of skeletal cells and correlations of miRNA dysfunction with bone diseases. MiRNAs have significant clinical potential which is reflected by their versatility as disease-specific biomarkers and their promise as therapeutic agents to ameliorate or reverse bone tissue degeneration.

Collaboration


Dive into the Jennifer J. Westendorf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre J. Van Wijnen

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge