Jennifer K. Hutchings
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer K. Hutchings.
Annals of Glaciology | 2011
Jennifer K. Hutchings; Andrew Roberts; Cathleen A. Geiger; Jacqueline A. Richter-Menge
Abstract In late March 2007 an array of GPS ice drifters was deployed in the Beaufort Sea as part of the Sea Ice Experiment: Dynamic Nature of the Arctic (SEDNA). the drifters were deployed in an array designed to resolve four, nested spatial scales of sea-ice deformation, from 10 to 140 km, with the arrays maintaining appropriate shape for strain-rate calculation until mid-June. In this paper, we test whether sea-ice deformation displays fractal properties in the vicinity of SEDNA. We identify that deformation time series have different spectral properties depending on the spatial scale. At the scales around 100 km, deformation is a red-noise process, indicating the importance of the ice-pack surface forcing in determining the deformation rate of sea ice at this scale. At smaller scales, the deformation becomes an increasingly whiter process (it has pink noise properties), which suggests an increasing role of dissipative processes at smaller scales. At spatial scales of 10–100 km, and sub-daily scales, there is no deformation coherence across scales; coherence only becomes apparent at longer scales greater than 100 km. the lack of coherence at small scales aids in understanding previous observations where correlation between 10km regions adjacent to each other varied widely, with correlation coefficients between –0.3 and 1. This suggests it is not appropriate to think of sea ice as having a decorrelation length scale for deformation. We find that lead scale observations of deformation are required when estimating ice growth in leads and ridging time series. For the two SEDNA arrays, we find coherence between 140 and 20 km scale deformation up to periods of 16 days. This suggests sea-ice deformation displays coherent deformation between 100 km scale and the scale of the Beaufort Sea (of order 1000 km), over synoptic time periods (daily to weekly timescales). Organization of leads at synoptic and larger scales is an emergent feature of the deformation field that is caused by the smooth variation of surface forcing (wind) on the ice pack.
Monthly Weather Review | 2005
Jennifer K. Hutchings; Petra Heil; William D. Hibler
Abstract Sea ice deformation is localized in narrow zones of high strain rate that extend hundreds of kilometers, for example, across the Arctic Basin. This paper demonstrates that these failure zones may be modeled with a viscous–plastic sea ice model, using an isotropic rheology. If the ice is assumed to be heterogeneous at the grid scale, and allowed to weaken in time, intersecting failure zones propagate across the region. The direction of failure propagation depends upon the stress applied to the ice (wind stress and boundary conditions) and the rheological model describing plastic failure of the ice. The spacing between failure zones is controlled by the magnitude of the wind stress and the distribution describing spatial variability of ice strength. Sea ice motion and deformation oscillate at close to a 12-h period throughout the Arctic and Antarctic pack ice. This oscillation is found at all spatial scales from hundreds of kilometers to the lead scale. It is shown that with an inertial embedded mo...
Journal of Geophysical Research | 2016
Alek A. Petty; Jennifer K. Hutchings; Jacqueline A. Richter-Menge; Mark Tschudi
Sea ice drift estimates from feature tracking of satellite passive microwave data are used to investigate seasonal trends and variability in the ice circulation around the Beaufort Gyre, over the multi-decadal period 1980–2013. Our results suggest an amplified response of the Beaufort Gyre ice circulation to wind forcing, especially during the late 2000s. We find increasing anticyclonic ice drift across all seasons, with the strongest trend in autumn, associated with increased ice export out of the southern Beaufort Sea (into the Chukchi Sea). A flux gate analysis highlights consistency across a suite of drift products. Despite these seasonal anticyclonic ice drift trends, a significant anticyclonic wind trend occurs in summer only, driven, in-part, by anomalously anticyclonic winds in 2007. Across all seasons, the ice drift curl is more anticyclonic than predicted from a linear relationship to the wind curl in the 2000s, compared to the 1980s/1990s. The strength of this anticyclonic ice drift curl amplification is strongest in autumn and appears to have increased since the 1980s (up to 2010). In spring and summer, the ice drift curl amplification occurs mainly between 2007 and 2010. These results suggest non-linear ice interaction feedbacks (e.g. a weaker, more mobile sea ice pack), enhanced atmospheric drag, and/or an increased role of the ocean. The results also show a weakening of the anticyclonic wind and ice circulation since 2010. This article is protected by copyright. All rights reserved.
Ocean Modelling | 2004
Jennifer K. Hutchings; Hrvoje Jasak; Seymour W. Laxon
Abstract With increasing awareness of the role of the polar regions in global climate, efficient and accurate simulation of sea ice is an important issue. The numerical solution procedure for the viscous-plastic sea ice model is examined. Recent developments are drawn upon and new discretisation practices introduced that improve efficiency and the accuracy of the simulation. The main components of the new solution procedure are bounded and conservative finite volume discretisation and a reinterpretation of the model structure, including the introduction of a method to resolve momentum-ice strength coupling. It is found that traditional segregated momentum solution procedures do not ensure mass conservation, which may introduce substantial thickness errors in Arctic sea ice simulations. The strength implicit correction scheme ensures mass conservation for a similar computational expense as previous, non-conservative methods.
Eos, Transactions American Geophysical Union | 2003
Jia Wang; R. Kwok; Francois J. Saucier; Jennifer K. Hutchings; Moto Ikeda; William D. Hibler; Jari Haapala; Max D. Coon; H. E. Markus Meier; Hajo Eicken; Nori Tanaka; Dick Prentki; Walter R. Johnson
Until recently the main motivation in sea ice modeling has been toward the development of large-scale models for climate studies. These models describe sea ice as a plastic material, with a smooth yield surface and ice strength dependent on a thickness distribution that is based on statistical representations of sea ice deformation through ridging. With tuning, they are found to reproduce ice extent and concentration in the Arctic and Antarctic, though velocity fields are overly smooth and many details, such as polynyas and leads, are not captured. There is increasing interest in regional ice modeling. In the near-shore Beaufort and Chukchi seas, there is considerable interest from the oil industry in the formation and breakup of landfast ice, the propagation of oil spills, and prediction of sea ice conditions. The importance of resolving eddies in the ocean and modeling small-scale (sub-10-km) sea ice processes is becoming apparent, as we begin to understand the non-linear effect of small-scale processes on the large-scale motion. Recently, there have been advances in the direction of small-scale process research and regional ice-ocean model development. The most pertinent of these are outlined in this article.
Journal of Geophysical Research | 2016
Frédéric Vivier; Jennifer K. Hutchings; Yusuke Kawaguchi; Takashi Kikuchi; James H. Morison; Antonio Lourenço; Tomohide Noguchi
In the central Arctic Ocean, autonomous observations of the ocean mixed layer and ice documented the transition from cold spring to early summer in 2011. Ice-motion measurements using GPS drifters captured three events of lead opening and ice ridge formation in May and June. Satellite sea ice concentration observations suggest that locally observed lead openings were part of a larger-scale pattern. We clarify how these ice deformation events are linked with the onset of basal sea ice melt, which preceded surface melt by 20 days. Observed basal melt and ocean warming are consistent with the available input of solar radiation into leads, once the advent of mild atmospheric conditions prevents lead refreezing. We use a one-dimensional numerical simulation incorporating a Local Turbulence Closure scheme to investigate the mechanisms controlling basal melt and upper ocean warming. According to the simulation, a combination of rapid ice motion and increased solar energy input at leads promotes basal ice melt, through enhanced mixing in the upper mixed layer, while slow ice motion during a large lead opening in mid-June produced a thin, low-density surface layer. This enhanced stratification near the surface facilitates storage of solar radiation within the thin layer, instead of exchange with deeper layers, leading to further basal ice melt preceding the upper surface melt.
Eos, Transactions American Geophysical Union | 2003
Igor V. Polyakov; David Walsh; Igor A. Dmitrenko; Roger L. Colony; Jennifer K. Hutchings; Leonid Timokhov; Mark A. Johnson; Eddy C. Carmack
Substantial changes have occurred in the Arctic over the last few decades. These changes are linked with the variability of external climate system in ways not yet fully understood. Unresolved issues concerning the driving processes and mechanisms behind these changes in the Arctic environment require further investigation. A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data. We have thus initiated efforts to establish a long-term, mooring-based observational system in the Eurasian and Canadian basins of the Arctic Ocean. A number of regional monitoring programs have elucidated local details of the circulation, but none has provided the large-scale coverage proposed here (Figure l). The widely spaced array of moorings discussed here will emphasize the largest-scale modes of variability over relevant time scales.
Annals of Glaciology | 2015
Jennifer K. Hutchings; P̀etra Heil; Olivier Lecomte; Roger P. Stevens; Ad Steer; Jl Lieser
Abstract Remotely sensed derivation of sea-ice thickness requires sea·ice density. Sea-ice density was estimated with three techniques during the second Sea Ice Physics and Ecosystem eXperimett (SIPEX-II, September-November 2012, East Antarctica). The sea ice was first-year highly deformed, mean thicknsss 1.2 m with layers, consistent with rafting, and 6-7/10 columnar ice and 3/10 granular ice. Ice density was found to be lower than values (900-920 kg m−3 used previously to derive ice thickness,, with columnar ice mean density of 870 kg m− 3. At two different ice stations the mean density of the ice was 800 kg m–3, the lower density reflecting a high percentage of porous granular ice at the second station. Error estimates for mass/volume and liquid/solid water methods are presented. With 0.1 m long, 0.1 m core samples, the error on individual density estimates is 28 kg m-3. Errors are larger for smaller machined blocks. Errors increase to 46 kg m-3 if the liquid/solid volume method is used. The mass/vouume method has a low bias due to brine drainage of at least 5%. Bulk densities estimated from ice and snow measurements along 100 m transects were high, and likely unrealistic as the assumption of isostatcc balance is not suitable over these length scales in deformed ice.
Eos, Transactions American Geophysical Union | 2008
Jennifer K. Hutchings; Cathleen A. Geiger; Andrew P. Roberts; Jacqueline A. Richter-Menge; M Doble; René Forsberg; Katharine Giles; Christian Haas; Stefan Hendricks; Chandra Khambhamettu; Seymour W. Laxon; Torge Martin; Matthew J. Pruis; Mani Thomas; Peter Wadhams; H. Jay Zwally
Over the past decade, the Arctic Ocean and Beaufort Sea ice pack has been less extensive and thinner than has been observed during the previous 35 years [e.g., Wadhams and Davis, 2000; Tucker et al., 2001; Rothrock et al., 1999; Parkinson and Cavalieri, 2002; Comiso, 2002]. During the summers of 2007 and 2008, the ice extents for both the Beaufort Sea and the Northern Hemisphere were the lowest on record. Mechanisms causing recent sea ice change in the Pacific Arctic and the Beaufort Sea are under investigation on many fronts [e.g., Drobot and Maslanik, 2003; Shimada et al., 2006]; the mechanisms include increased ocean surface warming due to Pacific Ocean water inflow to the region and variability in meteorological and surface conditions. However, in most studies addressing these events, the impact of sea ice dynamics, specifically deformation, has not been measured in detail.
Journal of Ocean University of China | 2012
Meibing Jin; Jennifer K. Hutchings; Yusuke Kawaguchi; Takashi Kikuchi
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models. Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer. In this study, idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid. When the lead is resolved by the grid, the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally. When averaged at a climate-model grid size, this vertical distribution of added salt is lead-fraction dependent. When the lead is unresolved, the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth (MLD). An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent. Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007. The results showed the most evident improvement in modeled MLD in the Arctic Basin, similar to that using a fixed n=5, as recommended by the previous Arctic regional model study, in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.