Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer Kearley is active.

Publication


Featured researches published by Jennifer Kearley.


Journal of Experimental Medicine | 2005

Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent

Jennifer Kearley; Jane E. Barker; Douglas S. Robinson

Deficient suppression of T cell responses to allergen by CD4+CD25+ regulatory T cells has been observed in patients with allergic disease. Our current experiments used a mouse model of airway inflammation to examine the suppressive activity of allergen-specific CD4+CD25+ T cells in vivo. Transfer of ovalbumin (OVA) peptide–specific CD4+CD25+ T cells to OVA-sensitized mice reduced airway hyperreactivity (AHR), recruitment of eosinophils, and T helper type 2 (Th2) cytokine expression in the lung after allergen challenge. This suppression was dependent on interleukin (IL) 10 because increased lung expression of IL-10 was detected after transfer of CD4+CD25+ T cells, and regulation was reversed by anti–IL-10R antibody. However, suppression of AHR, airway inflammation, and increased expression of IL-10 were still observed when CD4+CD25+ T cells from IL-10 gene–deficient mice were transferred. Intracellular cytokine staining confirmed that transfer of CD4+CD25+ T cells induced IL-10 expression in recipient CD4+ T cells, but no increase in IL-10 expression was detected in airway macrophages, dendritic cells, or B cells. These data suggest that CD4+CD25+ T cells can suppress the Th2 cell–driven response to allergen in vivo by an IL-10–dependent mechanism but that IL-10 production by the regulatory T cells themselves is not required for such suppression.


Journal of Experimental Medicine | 2009

Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13–induced tissue responses and apoptosis

Chun Geun Lee; Dominik Hartl; Gap Ryol Lee; Barbara Koller; Hiroshi Matsuura; Carla A. Da Silva; Myung Hyun Sohn; Lauren Cohn; Robert J. Homer; Alexander Kozhich; Alison A. Humbles; Jennifer Kearley; Anthony J. Coyle; Geoffrey L. Chupp; Jennifer L. Reed; Richard A. Flavell; Jack A. Elias

Mouse breast regression protein 39 (BRP-39; Chi3l1) and its human homologue YKL-40 are chitinase-like proteins that lack chitinase activity. Although YKL-40 is expressed in exaggerated quantities and correlates with disease activity in asthma and many other disorders, the biological properties of BRP-39/YKL-40 have only been rudimentarily defined. We describe the generation and characterization of BRP-39−/− mice, YKL-40 transgenic mice, and mice that lack BRP-39 and produce YKL-40 only in their pulmonary epithelium. Studies of these mice demonstrated that BRP-39−/− animals have markedly diminished antigen-induced Th2 responses and that epithelial YKL-40 rescues the Th2 responses in these animals. The ability of interleukin13 to induce tissue inflammation and fibrosis was also markedly diminished in the absence of BRP-39. Mechanistic investigations demonstrated that BRP-39 and YKL-40 play an essential role in antigen sensitization and immunoglobulin E induction, stimulate dendritic cell accumulation and activation, and induce alternative macrophage activation. These proteins also inhibit inflammatory cell apoptosis/cell death while inhibiting Fas expression, activating protein kinase B/AKT, and inducing Faim 3. These studies establish novel regulatory roles for BRP-39/YKL-40 in the initiation and effector phases of Th2 inflammation and remodeling and suggest that these proteins are therapeutic targets in Th2- and macrophage-mediated disorders.


Journal of Experimental Medicine | 2009

Peptide immunotherapy in allergic asthma generates IL-10–dependent immunological tolerance associated with linked epitope suppression

John D M Campbell; Karen F. Buckland; Sarah J. McMillan; Jennifer Kearley; William L.G. Oldfield; Lawrence J. Stern; Hans Grönlund; Marianne van Hage; Catherine J. Reynolds; Rosemary J. Boyton; Stephen P. Cobbold; A. Barry Kay; Daniel M. Altmann; Mark Larché

Treatment of patients with allergic asthma using low doses of peptides containing T cell epitopes from Fel d 1, the major cat allergen, reduces allergic sensitization and improves surrogate markers of disease. Here, we demonstrate a key immunological mechanism, linked epitope suppression, associated with this therapeutic effect. Treatment with selected epitopes from a single allergen resulted in suppression of responses to other (“linked”) epitopes within the same molecule. This phenomenon was induced after peptide immunotherapy in human asthmatic subjects and in a novel HLA-DR1 transgenic mouse model of asthma. Tracking of allergen-specific T cells using DR1 tetramers determined that suppression was associated with the induction of interleukin (IL)-10+ T cells that were more abundant than T cells specific for the single-treatment peptide and was reversed by anti–IL-10 receptor administration. Resolution of airway pathophysiology in this model was associated with reduced recruitment, proliferation, and effector function of allergen-specific Th2 cells. Our results provide, for the first time, in vivo evidence of linked epitope suppression and IL-10 induction in both human allergic disease and a mouse model designed to closely mimic peptide therapy in humans.


Journal of Immunology | 2004

Matrix Metalloproteinase-9 Deficiency Results in Enhanced Allergen-Induced Airway Inflammation

Sarah J. McMillan; Jennifer Kearley; J. Darren Campbell; Xing-Wu Zhu; Karen Y. Larbi; J. Michael Shipley; Robert M. Senior; Sussan Nourshargh

Matrix metalloproteinases (MMPs) are a large family of endopeptidases that proteolytically degrade extracellular matrix. Many different cells produce MMP-9, and levels have been shown to be up-regulated in patients with allergic asthma. The aim of this study was to investigate the in vivo role of MMP-9 during allergen-induced airway inflammation. Acute allergic pulmonary eosinophilia was established in MMP-9 knockout (KO) and wild-type (WT) control mice by sensitization and challenge with OVA. Cell recruitment was significantly increased in both bronchoalveolar lavage (BAL) and lung tissue compartments in MMP-9 KO mice compared with WT mice. This heightened cell recruitment was primarily due to increased eosinophils and Th2 cells in the BAL and lung tissue of MMP-9 KO mice in comparison with WT controls. Moreover, levels of the Th2 cytokines, IL-4 and IL-13, and the chemokines eotaxin/CCL11 and macrophage-derived chemokine/CCL22 were substantially increased in MMP-9 KO mice compared with WT after OVA challenge. Resolution of eosinophilia was similar between MMP-9 KO and WT mice, but Th2 cells persisted in BAL and lungs of MMP-9 KO mice for longer than in WT mice. Our results indicate that MMP-9 is critically involved in the recruitment of eosinophils and Th2 cells to the lung following allergen challenge, and suggest that MMP-9 plays a role in the development of Th2 responses to allergen.


Journal of Experimental Medicine | 2008

Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma

Elizabeth R. Walsh; Nisebita Sahu; Jennifer Kearley; Ebony Benjamin; Boo Hyon Kang; Alison A. Humbles; Avery August

Eosinophils have been implicated as playing a major role in allergic airway responses. However, the importance of these cells to the development of this disease has remained ambiguous despite many studies, partly because of lack of appropriate model systems. In this study, using transgenic murine models, we more clearly delineate a role for eosinophils in asthma. We report that, in contrast to results obtained on a BALB/c background, eosinophil-deficient C57BL/6 ΔdblGATA mice (eosinophil-null mice via the ΔDblGATA1 mutation) have reduced airway hyperresponsiveness, and cytokine production of interleukin (IL)-4, -5, and -13 in ovalbumin-induced allergic airway inflammation. This was caused by reduced T cell recruitment into the lung, as these mouse lungs had reduced expression of CCL7/MCP-3, CC11/eotaxin-1, and CCL24/eotaxin-2. Transferring eosinophils into these eosinophil-deficient mice and, more importantly, delivery of CCL11/eotaxin-1 into the lung during the development of this disease rescued lung T cell infiltration and airway inflammation when delivered together with allergen. These studies indicate that on the C57BL/6 background, eosinophils are integral to the development of airway allergic responses by modulating chemokine and/or cytokine production in the lung, leading to T cell recruitment.


Journal of Experimental Medicine | 2007

Th2-driven, allergen-induced airway inflammation is reduced after treatment with anti–Tim-3 antibody in vivo

Jennifer Kearley; Sarah J. McMillan

T cell immunoglobulin and mucin domain–containing molecule-3 (Tim-3) is a surface molecule that is preferentially expressed on activated Th1 cells in comparison to Th2 cells. Blockade of Tim-3 has been shown to enhance Th1-driven pathology in vivo, suggesting that blockade of Tim-3 may improve the development of Th2-associated responses such as allergy. To examine the effects of Tim-3 blockade on the Th2 response in vivo, we administered anti–Tim-3 antibody during pulmonary inflammation induced by transfer of ovalbumin (OVA)-reactive Th2 cells, and subsequent aerosol challenge with OVA. In this model, anti–Tim-3 antibody treatment before each airway challenge significantly reduced airway hyperreactivity, with a concomitant decrease in eosinophils and Th2 cells in the lung. We examined Th1 and Th2 cytokine levels in the lung after allergen challenge and found that pulmonary expression of the Th2 cytokine IL-5 was significantly reduced, whereas IFN-γ levels were significantly increased by anti–Tim-3 antibody treatment. Thus, blocking Tim-3 function has a beneficial effect during pulmonary inflammation by skewing the Th2 response toward that of a Th1 type, suggesting an important role for Tim-3 in the regulation of allergic disease.


The Journal of Infectious Diseases | 2012

Opposing Roles of Membrane and Soluble Forms of the Receptor for Advanced Glycation End Products in Primary Respiratory Syncytial Virus Infection

Allison L. Miller; Gary P. Sims; Yambasu A. Brewah; Marlon Rebelatto; Jennifer Kearley; Ebony Benjamin; Ashley E. Keller; Philip Brohawn; Ronald Herbst; Anthony J. Coyle; Alison A. Humbles; Roland Kolbeck

Respiratory syncytial virus (RSV), a common respiratory pathogen in infants and the older population, causes pulmonary inflammation and airway occlusion that leads to impairment of lung function. Here, we have established a role for receptor for advanced glycation end products (RAGE) in RSV infection. RAGE-deficient (ager−/−) mice were protected from RSV-induced weight loss and inflammation. This protection correlated with an early increase in type I interferons, later decreases in proinflammatory cytokines, and a reduction in viral load. To assess the contribution of soluble RAGE (sRAGE) to RSV-induced disease, wild-type and ager−/− mice were given doses of sRAGE following RSV infection. Of interest, sRAGE treatment prevented RSV-induced weight loss and neutrophilic inflammation to a degree similar to that observed in ager−/− mice. Our work further elucidates the roles of RAGE in the pathogenesis of respiratory infections and highlights the opposing roles of membrane and sRAGE in modulating the host response to RSV infection.


American Journal of Respiratory and Critical Care Medicine | 2009

Resolution of Allergic Inflammation and Airway Hyperreactivity Is Dependent upon Disruption of the T1/ST2–IL-33 Pathway

Jennifer Kearley; Karen F. Buckland; Sara A. Mathie


american thoracic society international conference | 2009

A Central Role for IL-9 in Mediating Mast Cell Progenitor Mobilization to the Lung and Chronic Remodeling of the Airways.

Jennifer Kearley; Jonas Erjefält; Cecilia Andersson; Tj Burwell; Tg Jones; Ebony Benjamin; Yambasu A. Brewah; A Robinchaud; S Pegorier; K Kolbeck; Pa Kiener; Mj Gurish; Anthony J. Coyle; Alison A. Humbles


american thoracic society international conference | 2012

MMP-12 Is A Critical Mediator Of Inflammation, IL-13 Expression And Fibrosis Following Activation Of Fas In The Airways

Jennifer Kearley; Marlon Rebelatto; Roland Kolbeck; Alison A. Humbles

Collaboration


Dive into the Jennifer Kearley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas S. Robinson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge