Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yambasu A. Brewah is active.

Publication


Featured researches published by Yambasu A. Brewah.


Journal of Immunology | 2002

Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences.

William F. Dall’Acqua; Robert M. Woods; E. Sally Ward; Susan R. Palaszynski; Nita K. Patel; Yambasu A. Brewah; Herren Wu; Peter A. Kiener; Solomon Langermann

Many biological functions, including control of the homeostasis and maternofetal transfer of serum γ-globulins, are mediated by the MHC class I-related neonatal FcR (FcRn). A correlation exists in mice between the binding affinity of IgG1/Fc fragments to FcRn at pH 6.0 and their serum t1/2. To expand this observation, phage display of mutagenized Fc fragments derived from a human IgG1 was used to increase their affinity to both murine and human FcRn. Ten variants were identified that have a higher affinity toward murine and human FcRn at pH 6.0, with ΔΔG (ΔGwild type − ΔGmutant) from 1.0 to 2.0 kcal/mol and from 0.6 to 2.4 kcal/mol, respectively. Those variants exhibit a parallel increase in binding at pH 7.4 to murine, but not human, FcRn. Although not degraded in blood in vitro, accumulated in tissues, nor excreted in urine, their serum concentration in mice is decreased. We propose that higher affinity to FcRn at pH 7.4 adversely affects release into the serum and offsets the benefit of the enhanced binding at pH 6.0.


Infection and Immunity | 2001

Use of a Whole Genome Approach To Identify Vaccine Molecules Affording Protection against Streptococcus pneumoniae Infection

Theresa M. Wizemann; Jon H. Heinrichs; John E. Adamou; Alice L. Erwin; Charles A. Kunsch; Gil H. Choi; Steven C. Barash; Craig A. Rosen; H. Robert Masure; Elaine Tuomanen; Anthony Gayle; Yambasu A. Brewah; William Walsh; Philip Barren; Raju Lathigra; Mark S. Hanson; Solomon Langermann; Syd Johnson; Scott Koenig

ABSTRACT Microbial targets for protective humoral immunity are typically surface-localized proteins and contain common sequence motifs related to their secretion or surface binding. Exploiting the whole genome sequence of the human bacterial pathogen Streptococcus pneumoniae, we identified 130 open reading frames encoding proteins with secretion motifs or similarity to predicted virulence factors. Mice were immunized with 108 of these proteins, and 6 conferred protection against disseminated S. pneumoniaeinfection. Flow cytometry confirmed the surface localization of several of these targets. Each of the six protective antigens showed broad strain distribution and immunogenicity during human infection. Our results validate the use of a genomic approach for the identification of novel microbial targets that elicit a protective immune response. These new antigens may play a role in the development of improved vaccines against S. pneumoniae.


Infection and Immunity | 2001

Identification and Characterization of a Novel Family of Pneumococcal Proteins That Are Protective against Sepsis

John E. Adamou; Jon H. Heinrichs; Alice L. Erwin; William Walsh; Tony Gayle; Melissa Dormitzer; Ron Dagan; Yambasu A. Brewah; Philip Barren; Raju Lathigra; Solomon Langermann; Scott Koenig; Syd Johnson

ABSTRACT Four pneumococcal genes (phtA, phtB, phtD, andphtE) encoding a novel family of homologous proteins (32 to 87% identity) were identified from the Streptococcus pneumoniae genomic sequence. These open reading frames were selected as potential vaccine candidates based upon their possession of hydrophobic leader sequences which presumably target these proteins to the bacterial cell surface. Analysis of the deduced amino acid sequences of these gene products revealed the presence of a histidine triad motif (HxxHxH), termed Pht (pneumococcal histidine triad) that is conserved and repeated several times in each of the four proteins. The four pht genes (phtA, phtB, phtD, and a truncated version of phtE) were expressed inEscherichia coli. A flow cytometry-based assay confirmed that PhtA, PhtB, PhtD and, to a lesser extent, PhtE were detectable on the surface of intact bacteria. Recombinant PhtA, PhtB, and PhtD elicited protection against certain pneumococcal capsular types in a mouse model of systemic disease. These novel pneumococcal antigens may serve as effective vaccines against the most prevalent pneumococcal serotypes.


American Journal of Respiratory and Critical Care Medicine | 2011

IL-9 Governs Allergen-induced Mast Cell Numbers in the Lung and Chronic Remodeling of the Airways

Jennifer Kearley; Jonas Erjefält; Cecilia Andersson; Ebony Benjamin; Carla P. Jones; Annette Robichaud; Sophie Pegorier; Yambasu A. Brewah; Timothy Burwell; Leif Bjermer; Peter A. Kiener; Roland Kolbeck; Anthony J. Coyle; Alison A. Humbles

RATIONALE IL-9 is a pleiotropic cytokine that has multiple effects on structural as well as numerous hematopoietic cells, which are central to the pathogenesis of asthma. OBJECTIVES The contribution of IL-9 to asthma pathogenesis has thus far been unclear, due to conflicting reports in the literature. These earlier studies focused on the role of IL-9 in acute inflammatory models; here we have investigated the effects of IL-9 blockade during chronic allergic inflammation. METHODS Mice were exposed to either prolonged ovalbumin or house dust mite allergen challenge to induce chronic inflammation and airway remodeling. MEASUREMENTS AND MAIN RESULTS We found that IL-9 governs allergen-induced mast cell (MC) numbers in the lung and has pronounced effects on chronic allergic inflammation. Anti-IL-9 antibody-treated mice were protected from airway remodeling with a concomitant reduction in mature MC numbers and activation, in addition to decreased expression of the profibrotic mediators transforming growth factor-β1, vascular endothelial growth factor, and fibroblast growth factor-2 in the lung. Airway remodeling was associated with impaired lung function in the peripheral airways and this was reversed by IL-9 neutralization. In human asthmatic lung tissue, we identified MCs as the main IL-9 receptor expressing population and found them to be sources of vascular endothelial growth factor and fibroblast growth factor-2. CONCLUSIONS Our data suggest an important role for an IL-9-MC axis in the pathology associated with chronic asthma and demonstrate that an impact on this axis could lead to a reduction in chronic inflammation and improved lung function in patients with asthma.


Journal of Experimental Medicine | 2013

RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

Cherilyn M. Sirois; Tengchuan Jin; Allison L. Miller; Damien Bertheloot; Hirotaka Nakamura; Gabor Horvath; Abubakar Mian; Jiansheng Jiang; Jacob Schrum; Lukas Bossaller; Karin Pelka; Natalio Garbi; Yambasu A. Brewah; Jane Tian; Chew-Shun Chang; Partha S. Chowdhury; Gary P. Sims; Roland Kolbeck; Anthony J. Coyle; Alison A. Humbles; T. Sam Xiao; Eicke Latz

Receptor for advanced glycation end-products (RAGE) detects nucleic acids and promotes DNA uptake into endosomes, which in turn lowers the immune recognition threshold for TLR9 activation.


The Journal of Infectious Diseases | 2008

Macrophage Impairment Underlies Airway Occlusion in Primary Respiratory Syncytial Virus Bronchiolitis

Jennifer L. Reed; Yambasu A. Brewah; Tracy Delaney; Timothy P. Welliver; Timothy Burwell; Ebony Benjamin; Ellen Kuta; Alexander Kozhich; LuAnn McKinney; JoAnn Suzich; Peter A. Kiener; Luis F. Avendaño; Luis Velozo; Alison A. Humbles; Robert C. Welliver; Anthony J. Coyle

Although respiratory syncytial virus (RSV) infection is the most important cause of bronchiolitis in infants, the pathogenesis of RSV disease is poorly described. We studied histopathologic changes in a panel of lung tissue specimens obtained from infants with fatal cases of primary RSV infection. In these tissues, airway occlusion with accumulations of infected, apoptotic cellular debris and serum protein was consistently observed. Similar observations were found after RSV infection in New Zealand black (NZB) mice, which have constitutive deficiencies in macrophage function, but not in BALB/c mice. A deficiency in the number of alveolar macrophages in NZB mice appears to be central to enhanced disease, because depletion of alveolar macrophages in BALB/c mice before RSV exposure resulted in airway occlusion. In mice with insufficient numbers of macrophages, RSV infection yielded an increased viral load and enhanced expression of type I interferon-associated genes at the height of disease. Together, our data suggest that innate, rather than adaptive, immune responses are critical determinants of the severity of RSV bronchiolitis.


American Journal of Pathology | 2010

Lung Chitinolytic Activity and Chitotriosidase Are Elevated in Chronic Obstructive Pulmonary Disease and Contribute to Lung Inflammation

Séverine Létuvé; Alexander Kozhich; Alison A. Humbles; Yambasu A. Brewah; Marie-Christine Dombret; Martine Grandsaigne; Homa Adle; Roland Kolbeck; Michel Aubier; Anthony J. Coyle; Marina Pretolani

Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation and emphysematous alveolar destruction. In this study, we have investigated whether chitotriosidase (ChTRase) and acidic mammalian chitinase, two chitinases with chitinolytic activity, are selectively augmented in COPD and contribute to its pathogenesis. We found that smokers with COPD, but not asthmatics, had higher chitinolytic activity and increased levels of ChTRase in bronchoalveolar lavage, more ChTRase-positive cells in bronchial biopsies, and an elevated proportion of alveolar macrophages expressing ChTRase than smokers without COPD or never-smokers. ChTRase accounted for approximately 80% of bronchoalveolar lavage chitinolytic activity, while acidic mammalian chitinase was undetectable. Bronchoalveolar lavage chitinolytic activity and ChTRase were associated with airflow obstruction and emphysema and with the levels of interleukin (IL)-1beta, IL-8, tumor-necrosis factor (TNF)-alpha, and its type II soluble receptor. Tumor necrosis factor-alpha stimulated ChTRase release only from alveolar macrophages from smokers with COPD, and exposure of these cells to ChTRase promoted the release of IL-8, monocyte-chemoattractant protein-1, and metalloproteinase-9. Finally, ChTRase overexpression in the lung of normal mice promoted macrophage recruitment and the synthesis of the murine homologue of IL-8, keratinocyte-derived cytokine, and of monocyte-chemoattractant protein-1. We conclude that pulmonary ChTRase overexpression may represent a novel important mechanism involved in COPD onset and progression.


PLOS ONE | 2015

S100A9 Induced Inflammatory Responses Are Mediated by Distinct Damage Associated Molecular Patterns (DAMP) Receptors In Vitro and In Vivo

Bo Chen; Allison L. Miller; Marlon Rebelatto; Yambasu A. Brewah; Daniel C. Rowe; Lori Clarke; Meggan Czapiga; Kim Rosenthal; Tomozumi Imamichi; Yan Chen; Chew-Shun Chang; Partha S. Chowdhury; Brian Naiman; Yue Wang; De Yang; Alison A. Humbles; Ronald Herbst; Gary P. Sims

Release of endogenous damage associated molecular patterns (DAMPs), including members of the S100 family, are associated with infection, cellular stress, tissue damage and cancer. The extracellular functions of this family of calcium binding proteins, particularly S100A8, S100A9 and S100A12, are being delineated. They appear to mediate their functions via receptor for advanced glycation endproducts (RAGE) or TLR4, but there remains considerable uncertainty over the relative physiological roles of these DAMPs and their pattern recognition receptors. In this study, we surveyed the capacity of S100 proteins to induce proinflammatory cytokines and cell migration, and the contribution RAGE and TLR4 to mediate these responses in vitro. Using adenoviral delivery of murine S100A9, we also examined the potential for S100A9 homodimers to trigger lung inflammation in vivo. S100A8, S100A9 and S100A12, but not the S100A8/A9 heterodimer, induced modest levels of TLR4-mediated cytokine production from human PBMC. In contrast, for most S100s including S100A9, RAGE blockade inhibited S100-mediated cell migration of THP1 cells and major leukocyte populations, whereas TLR4-blockade had no effect. Intranasal administration of murine S100A9 adenovirus induced a specific, time-dependent predominately macrophage infiltration that coincided with elevated S100A9 levels and proinflammatory cytokines in the BAL fluid. Inflammatory cytokines were markedly ablated in the TLR4-defective mice, but unexpectedly the loss of TLR4 signaling or RAGE-deficiency did not appreciably impact the S100A9-mediated lung pathology or the inflammatory cell infiltrate in the alveolar space. These data demonstrate that physiological levels of S100A9 homodimers can trigger an inflammatory response in vivo, and despite the capacity of RAGE and TLR4 blockade to inhibit responses in vitro, the response is predominately independent of both these receptors.


The Journal of Infectious Diseases | 2012

Opposing Roles of Membrane and Soluble Forms of the Receptor for Advanced Glycation End Products in Primary Respiratory Syncytial Virus Infection

Allison L. Miller; Gary P. Sims; Yambasu A. Brewah; Marlon Rebelatto; Jennifer Kearley; Ebony Benjamin; Ashley E. Keller; Philip Brohawn; Ronald Herbst; Anthony J. Coyle; Alison A. Humbles; Roland Kolbeck

Respiratory syncytial virus (RSV), a common respiratory pathogen in infants and the older population, causes pulmonary inflammation and airway occlusion that leads to impairment of lung function. Here, we have established a role for receptor for advanced glycation end products (RAGE) in RSV infection. RAGE-deficient (ager−/−) mice were protected from RSV-induced weight loss and inflammation. This protection correlated with an early increase in type I interferons, later decreases in proinflammatory cytokines, and a reduction in viral load. To assess the contribution of soluble RAGE (sRAGE) to RSV-induced disease, wild-type and ager−/− mice were given doses of sRAGE following RSV infection. Of interest, sRAGE treatment prevented RSV-induced weight loss and neutrophilic inflammation to a degree similar to that observed in ager−/− mice. Our work further elucidates the roles of RAGE in the pathogenesis of respiratory infections and highlights the opposing roles of membrane and sRAGE in modulating the host response to RSV infection.


Journal of General Virology | 2013

RAGE inhibits human respiratory syncytial virus syncytium formation by interfering with F-protein function

Jane Tian; Kelly Huang; Subramaniam Krishnan; Catherine Svabek; Daniel C. Rowe; Yambasu A. Brewah; Miguel A. Sanjuan; Andriani C. Patera; Roland Kolbeck; Ronald Herbst; Gary P. Sims

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres in vitro. RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.

Collaboration


Dive into the Yambasu A. Brewah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Tian

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge