Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Harris is active.

Publication


Featured researches published by Jennifer L. Harris.


Nature | 2012

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Jordi Barretina; Giordano Caponigro; Nicolas Stransky; Kavitha Venkatesan; Adam A. Margolin; Sungjoon Kim; Christopher J. Wilson; Joseph Lehar; Gregory V. Kryukov; Dmitriy Sonkin; Anupama Reddy; Manway Liu; Lauren Murray; Michael F. Berger; John E. Monahan; Paula Morais; Jodi Meltzer; Adam Korejwa; Judit Jané-Valbuena; Felipa A. Mapa; Joseph Thibault; Eva Bric-Furlong; Pichai Raman; Aaron Shipway; Ingo H. Engels; Jill Cheng; Guoying K. Yu; Jianjun Yu; Peter Aspesi; Melanie de Silva

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.


Nature | 2010

COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

Cory M. Johannessen; Jesse S. Boehm; So Young Kim; Sapana Thomas; Leslie Wardwell; Laura A. Johnson; Caroline Emery; Nicolas Stransky; Alexandria P. Cogdill; Jordi Barretina; Giordano Caponigro; Haley Hieronymus; Ryan R. Murray; Kourosh Salehi-Ashtiani; David E. Hill; Marc Vidal; Jean Zhao; Xiaoping Yang; Ozan Alkan; Sungjoon Kim; Jennifer L. Harris; Christopher J. Wilson; Vic E. Myer; Peter Finan; David E. Root; Thomas M. Roberts; Todd R. Golub; Keith T. Flaherty; Reinhard Dummer; Barbara Weber

Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.


Journal of Clinical Oncology | 2005

Phase I Safety, Pharmacokinetics, and Clinical Activity Study of Lapatinib (GW572016), a Reversible Dual Inhibitor of Epidermal Growth Factor Receptor Tyrosine Kinases, in Heavily Pretreated Patients With Metastatic Carcinomas

H. A. Burris; Herbert Hurwitz; E. Claire Dees; Afshin Dowlati; Kimberly L. Blackwell; Bert H. O'Neil; Paul K. Marcom; Matthew Ellis; Beth Overmoyer; Suzanne F. Jones; Jennifer L. Harris; Deborah A. Smith; Kevin M. Koch; Andrew G. Stead; Steve Mangum; Neil L. Spector

PURPOSE This study (EGF10004) assessed the safety/tolerability, pharmacokinetics, and clinical activity of daily oral dosing with lapatinib (GW572016) in patients with ErbB1-expressing and/or ErbB2-overexpressing advanced-stage refractory solid tumors. PATIENTS AND METHODS Heavily pretreated patients with ErbB1-expressing and/or ErbB2-overexpressing metastatic cancers were randomly assigned to one of five dose cohorts of lapatinib administered once daily. Pharmacokinetic samples were obtained on days 1 and 20. Clinical response was assessed every 8 weeks. RESULTS Sixty-seven patients with metastatic solid tumors were treated with lapatinib. The most frequently reported drug-related adverse events were diarrhea (42%) and rash (31%). No grade 4 drug-related adverse events were reported. Five grade 3 drug-related toxicities (gastrointestinal events and rash) were experienced by four patients. Drug-related interstitial pneumonitis or cardiac dysfunction associated with other ErbB-targeted therapies was not reported. Four patients with trastuzumab-resistant metastatic breast cancer-two of whom were classified as having inflammatory breast cancer-had partial responses (PRs). Twenty-four patients with various other carcinomas experienced stable disease, of whom 10 received lapatinib for > or = 6 months. The relationships between lapatinib dose or serum concentration and clinical response could not be adequately characterized due to the limited response data. The incidence of diarrhea increased with increasing dose, whereas the incidence of rash was not related to dose. CONCLUSION Lapatinib was well tolerated at doses ranging from 500 to 1,600 mg once daily. Clinical activity was observed in heavily pretreated patients with ErbB1-expressing and/or ErbB2-overexpressing metastatic cancers, including four PRs in patients with trastuzumab-resistant breast cancers and prolonged stable disease in 10 patients.


Cancer Discovery | 2014

The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung Cancer

Luc Friboulet; Nanxin Li; Ryohei Katayama; Christian C. Lee; Justin F. Gainor; Adam S. Crystal; Pierre-Yves Michellys; Mark M. Awad; Noriko Yanagitani; Sungjoon Kim; AnneMarie C. Pferdekamper; Jie Li; Shailaja Kasibhatla; Frank Sun; Xiuying Sun; Su Hua; Peter McNamara; Sidra Mahmood; Elizabeth L. Lockerman; Naoya Fujita; Makoto Nishio; Jennifer L. Harris; Alice T. Shaw; Jeffrey A. Engelman

UNLABELLED Non-small cell lung cancers (NSCLC) harboring anaplastic lymphoma kinase (ALK) gene rearrangements invariably develop resistance to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Herein, we report the first preclinical evaluation of the next-generation ALK TKI, ceritinib (LDK378), in the setting of crizotinib resistance. An interrogation of in vitro and in vivo models of acquired resistance to crizotinib, including cell lines established from biopsies of patients with crizotinib-resistant NSCLC, revealed that ceritinib potently overcomes crizotinib-resistant mutations. In particular, ceritinib effectively inhibits ALK harboring L1196M, G1269A, I1171T, and S1206Y mutations, and a cocrystal structure of ceritinib bound to ALK provides structural bases for this increased potency. However, we observed that ceritinib did not overcome two crizotinib-resistant ALK mutations, G1202R and F1174C, and one of these mutations was identified in 5 of 11 biopsies from patients with acquired resistance to ceritinib. Altogether, our results demonstrate that ceritinib can overcome crizotinib resistance, consistent with clinical data showing marked efficacy of ceritinib in patients with crizotinib-resistant disease. SIGNIFICANCE The second-generation ALK inhibitor ceritinib can overcome several crizotinib-resistant mutations and is potent against several in vitro and in vivo laboratory models of acquired resistance to crizotinib. These findings provide the molecular basis for the marked clinical activity of ceritinib in patients with ALK-positive NSCLC with crizotinib-resistant disease. Cancer Discov; 4(6); 662-73. ©2014 AACR. See related commentary by Ramalingam and Khuri, p. 634 This article is highlighted in the In This Issue feature, p. 621.


Journal of Clinical Oncology | 2005

Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies

Neil L. Spector; Wenle Xia; H. A. Burris; Herbert Hurwitz; E. Claire Dees; Afshin Dowlati; Bert H. O'Neil; Beth Overmoyer; Paul K. Marcom; Kimberly L. Blackwell; Deborah A. Smith; Kevin M. Koch; Andrew G. Stead; Steven Mangum; Matthew J. Ellis; Leihua Liu; Albert Man; Troy Bremer; Jennifer L. Harris; Sarah S. Bacus

PURPOSE This was a pilot study to assess the biologic effects of lapatinib on various tumor growth/survival pathways in patients with advanced ErbB1 and/or ErbB2-overexpressing solid malignancies. PATIENTS AND METHODS Heavily pretreated patients with metastatic cancers overexpressing ErbB2 and/or expressing ErbB1 were randomly assigned to one of five dose cohorts of lapatinib (GW572016) administered orally once daily continuously. The biologic effects of lapatinib on tumor growth and survival pathways were assessed in tumor biopsies obtained before and after 21 days of therapy. Clinical response was determined at 8 weeks. RESULTS Sequential tumor biopsies from 33 patients were examined. Partial responses occurred in four patients with breast cancer, and disease stabilization occurred in 11 others with various malignancies. Responders exhibited variable levels of inhibition of p-ErbB1, p-ErbB2, p-Erk1/2, p-Akt, cyclin D1, and transforming growth factor alpha. Even some nonresponders demonstrated varying degrees of biomarker inhibition. Increased tumor cell apoptosis (TUNEL) occurred in patients with evidence of tumor regression but not in nonresponders (progressive disease). Clinical response was associated with a pretreatment TUNEL score > 0 and increased pretreatment expression of ErbB2, p-ErbB2, Erk1/2, p-Erk1/2, insulin-like growth factor receptor-1, p70 S6 kinase, and transforming growth factor alpha compared with nonresponders. CONCLUSION Lapatinib exhibited preliminary evidence of biologic and clinical activity in ErbB1 and/or ErbB2-overexpressing tumors. However, the limited sample size of this study and the variability of the biologic endpoints suggest that further work is needed to prioritize biomarkers for disease-directed studies, and underscores the need for improved trial design strategies in early clinical studies of targeted agents.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer

Wenle Xia; Sarah S. Bacus; Priti S. Hegde; Intisar Husain; Jay C. Strum; Leihua Liu; Georgina Paulazzo; Ljuba Lyass; Patricia Trusk; Jason Hill; Jennifer L. Harris; Neil L. Spector

The development of acquired resistance to ErbB2 tyrosine kinase inhibitors limits the clinical efficacy of this class of cancer therapeutics. Little is known about the mechanism(s) of acquired resistance to these agents. Here we establish a model of acquired resistance to N-{3-chloro-4-[(3-fluorobenzyl) oxy]phenyl}-6-[5-({[2 (methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (lapatinib), an inhibitor of ErbB2 and ErbB1 tyrosine kinases by chronically exposing lapatinib-sensitive ErbB2-overexpressing breast cancer cells to lapatinib, simulating the clinic where lapatinib is administered on a daily chronic basis. Analysis of baseline gene expression in acquired lapatinib-resistant and parental cells indicates estrogen receptor (ER) signaling involvement in the development of resistance. Using gene interference, we confirm that acquired resistance to lapatinib is mediated by a switch in cell survival dependence and regulation of a key antiapoptotic mediator from ErbB2 alone to codependence upon ER and ErbB2 rather than loss of ErbB2 expression or insensitivity of ErbB2 signaling to lapatinib. Increased ER signaling in response to lapatinib is enhanced by the activation of factors facilitating the transcriptional activity of ER, notably FOXO3a and caveolin-1. Importantly, we confirm that lapatinib induces ER signaling in tumor biopsies from patients with ErbB2-overexpressing breast cancers receiving lapatinib therapy. These findings provided the rationale for preventing the development of acquired resistance by simultaneously inhibiting both ER and ErbB2 signaling pathways. Establishing clinically relevant models of acquired resistance to ErbB2 kinase inhibitors will enhance therapeutic strategies to improve clinical outcomes for patients with ErbB2-overexpressing breast cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974

Jun Liu; Shifeng Pan; Mindy H. Hsieh; Nicholas Ng; Fangxian Sun; Tao Wang; Shailaja Kasibhatla; Alwin Schuller; Allen Li; Dai Cheng; Jie Li; Celin Tompkins; Anne Marie Pferdekamper; Auzon Steffy; Jane Cheng; Colleen Kowal; Van Phung; Gui-Rong Guo; Yan Wang; Martin P. Graham; Shannon Flynn; J. Chad Brenner; Chun Li; M. Cristina Villarroel; Peter G. Schultz; Xu Wu; Peter McNamara; William R. Sellers; Lilli Petruzzelli; Anthony L. Boral

Significance Targeting the Wnt pathway in cancer is an attractive therapeutic approach. However, success has been limited because of the lack of effective therapeutic agents and the lack of biomarkers to define the patient population that would benefit from such a therapy. Herein, we report the discovery of LGK974, a drug that targets Porcupine, a Wnt-specific acyltransferase. We show that LGK974 potently inhibits Wnt signaling, has strong efficacy in rodent tumor models, and is well-tolerated. We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide a strategy and tools for targeting Wnt-driven cancer. Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2. LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV–Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wnt-driven cancers through the inhibition of PORCN.


Journal of Medicinal Chemistry | 2013

Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials.

Thomas H. Marsilje; Wei Pei; Bei Chen; Wenshuo Lu; Tetsuo Uno; Yunho Jin; Tao Jiang; Sung Joon Kim; Nanxin Li; Markus Warmuth; Yelena Sarkisova; Frank Sun; Auzon Steffy; AnneMarie C. Pferdekamper; Allen Li; Sean B. Joseph; Young Chul Kim; Bo Liu; Tove Tuntland; Xiaoming Cui; Nathanael S. Gray; Ruo Steensma; Yongqin Wan; Jiqing Jiang; Greg Chopiuk; Jie Li; W. Perry Gordon; Wendy Richmond; Kevin Johnson; Jonathan Chang

The synthesis, preclinical profile, and in vivo efficacy in rat xenograft models of the novel and selective anaplastic lymphoma kinase inhibitor 15b (LDK378) are described. In this initial report, preliminary structure-activity relationships (SARs) are described as well as the rational design strategy employed to overcome the development deficiencies of the first generation ALK inhibitor 4 (TAE684). Compound 15b is currently in phase 1 and phase 2 clinical trials with substantial antitumor activity being observed in ALK-positive cancer patients.


Nature Biotechnology | 2000

Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin

Bradley J. Backes; Jennifer L. Harris; Francesco Leonetti; Charles S. Craik; Jonathan A. Ellman

We have developed a strategy for the synthesis of positional-scanning synthetic combinatorial libraries (PS-SCL) that does not depend on the identity of the P1 substituent. To demonstrate the strategy, we synthesized a tetrapeptide positional library in which the P1 amino acid is held constant as a lysine and the P4-P3-P2 positions are positionally randomized. The 6,859 members of the library were synthesized on solid support with an alkane sulfonamide linker, and then displaced from the solid support by condensation with a fluorogenic 7-amino-4-methylcoumarin-derivatized lysine. This library was used to determine the extended substrate specificities of two trypsin-like enzymes, plasmin and thrombin, which are involved in the blood coagulation pathway. The optimal P4 to P2 substrate specificity for plasmin was P4-Lys/Nle (norleucine)/Val/Ile/Phe, P3-Xaa, and P2-Tyr/Phe/Trp. This cleavage sequence has recently been identified in some of plasmins physiological substrates. The optimal P4 to P2 extended substrate sequence determined for thrombin was P4-Nle/Leu/Ile/Phe/Val, P3-Xaa, and P2-Pro, a sequence found in many of the physiological substrates of thrombin. Single-substrate kinetic analysis of plasmin and thrombin was used to validate the substrate preferences resulting from the PS-SCL. By three-dimensional structural modeling of the substrates into the active sites of plasmin and thrombin, we identified potential determinants of the defined substrate specificity. This method is amenable to the incorporation of diverse substituents at the P1 position for exploring molecular recognition elements in proteolytic enzymes.


Journal of Clinical Oncology | 2008

Phase II Study of Predictive Biomarker Profiles for Response Targeting Human Epidermal Growth Factor Receptor 2 (HER-2) in Advanced Inflammatory Breast Cancer With Lapatinib Monotherapy

Stephen Albert Johnston; Maureen E. Trudeau; Bella Kaufman; Hamouda Boussen; Kimberley Blackwell; Patricia LoRusso; Donald P. Lombardi; Slim Ben Ahmed; Dennis L. Citrin; Michelle DeSilvio; Jennifer L. Harris; Ron E. Westlund; V. M. Salazar; Tal Zaks; Neil L. Spector

PURPOSE Inflammatory breast cancer (IBC) is one of the most aggressive forms of breast cancer. Lapatinib, an oral reversible inhibitor of epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2), demonstrated clinical activity in four of five IBC patients in phase I trials. We conducted a phase II trial to confirm the sensitivity of IBC to lapatinib, to determine whether response is HER-2 or EGFR dependent, and to elucidate a molecular signature predictive of lapatinib sensitivity. PATIENTS AND METHODS Our open-label multicenter phase II trial (EGF103009) assessed clinical activity and safety of lapatinib monotherapy in patients with recurrent or anthracycline-refractory IBC. Patients were assigned to cohorts A (HER-2-overexpressing [HER-2+]) or B(HER-2-/EGFR+) and fresh pretreatment tumor biopsies were collected. RESULTS Forty-five patients (30 in cohort A; 15 in cohort B) received lapatinib 1,500 mg once daily continuously. Clinical presentation and biomarker analyses demonstrated a tumor molecular signature consistent with IBC. Lapatinib was generally well tolerated, with primarily grade 1/2 skin and GI toxicities. Fifteen patients (50%) in cohort A had clinical responses to lapatinib in skin and/or measurable disease (according to Response Evaluation Criteria in Solid Tumors) compared with one patient in cohort B. Within cohort A, phosphorylated (p) HER-3 and lack of p53 expression predicted for response to lapatinib (P < .05). Tumors coexpressing pHER-2 and pHER-3 were more likely to respond to lapatinib (nine of 10 v four of 14; P = .0045). Prior trastuzumab therapy and loss of phosphate and tensin homolog 10 (PTEN) did not preclude response to lapatinib. CONCLUSION Lapatinib is well tolerated with clinical activity in heavily pretreated HER-2+, but not EGFR+/HER-2-, IBC. In this study, coexpression of pHER-2 and pHER-3 in tumors seems to predict for a favorable response to lapatinib. These findings warrant further investigation of lapatinib monotherapy or combination therapy in HER-2+ IBC.

Collaboration


Dive into the Jennifer L. Harris's collaboration.

Top Co-Authors

Avatar

Jun Li

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bradley J. Backes

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

David C. Tully

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Christine Tumanut

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Williams

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tove Tuntland

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Badry Bursulaya

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge