Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer L. Silhavy is active.

Publication


Featured researches published by Jennifer L. Silhavy.


Nature Genetics | 2012

De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly

Jeong Ho Lee; My N. Huynh; Jennifer L. Silhavy; Sangwoo Kim; Tracy Dixon-Salazar; Andrew Heiberg; Eric Scott; Vineet Bafna; Kiley J. Hill; Adrienne Collazo; Vincent Funari; Carsten Russ; Stacey Gabriel; Gary W. Mathern; Joseph G. Gleeson

De novo somatic mutations in focal areas are well documented in diseases such as neoplasia but are rarely reported in malformation of the developing brain. Hemimegalencephaly (HME) is characterized by overgrowth of either one of the two cerebral hemispheres. The molecular etiology of HME remains a mystery. The intractable epilepsy that is associated with HME can be relieved by the surgical treatment hemispherectomy, allowing sampling of diseased tissue. Exome sequencing and mass spectrometry analysis in paired brain-blood samples from individuals with HME (n = 20 cases) identified de novo somatic mutations in 30% of affected individuals in the PIK3CA, AKT3 and MTOR genes. A recurrent PIK3CA c.1633G>A mutation was found in four separate cases. Identified mutations were present in 8–40% of sequenced alleles in various brain regions and were associated with increased neuronal S6 protein phosphorylation in the brains of affected individuals, indicating aberrant activation of mammalian target of rapamycin (mTOR) signaling. Thus HME is probably a genetically mosaic disease caused by gain of function in phosphatidylinositol 3-kinase (PI3K)-AKT3-mTOR signaling.


Science | 2014

Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders

Gaia Novarino; Ali G. Fenstermaker; Maha S. Zaki; Matan Hofree; Jennifer L. Silhavy; Andrew Heiberg; Mostafa Abdellateef; Basak Rosti; Eric Scott; Lobna Mansour; Amira Masri; Hülya Kayserili; Jumana Y. Al-Aama; Ghada M.H. Abdel-Salam; Ariana Karminejad; Majdi Kara; Bülent Kara; Bita Bozorgmehri; Tawfeg Ben-Omran; Faezeh Mojahedi; Iman Gamal El Din Mahmoud; Naima Bouslam; Ahmed Bouhouche; Ali Benomar; Sylvain Hanein; Laure Raymond; Sylvie Forlani; Massimo Mascaro; Laila Selim; Nabil Shehata

Neurodegenerative Genetics The underlying genetics of neurodegenerative disorders tend not to be well understood. Novarino et al. (p. 506; see the Perspective by Singleton) investigated the underlying genetics of hereditary spastic paraplegia (HSP), a human neurodegenerative disease, by sequencing the exomes of individuals with recessive neurological disorders. Loss-of-function gene mutations in both novel genes and genes previously implicated for this condition were identified, and several were functionally validated. Analysis of hereditary spastic paraplegia genes identifies mutants involved in human neurodegenerative disease. [Also see Perspective by Singleton] Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.


American Journal of Human Genetics | 2004

Mutations in the AHI1 Gene, Encoding Jouberin, Cause Joubert Syndrome with Cortical Polymicrogyria

Tracy Dixon-Salazar; Jennifer L. Silhavy; Sarah E. Marsh; Carrie M. Louie; Lesley C. Scott; Aithala Gururaj; Lihadh Al-Gazali; Asma A. Al-Tawari; Hülya Kayserili; László Sztriha; Joseph G. Gleeson

Joubert syndrome (JS) is an autosomal recessive disorder marked by agenesis of the cerebellar vermis, ataxia, hypotonia, oculomotor apraxia, neonatal breathing abnormalities, and mental retardation. Despite the fact that this condition was described >30 years ago, the molecular basis has remained poorly understood. Here, we identify two frameshift mutations and one missense mutation in the AHI1 gene in three consanguineous families with JS, some with cortical polymicrogyria. AHI1, encoding the Jouberin protein, is an alternatively spliced signaling molecule that contains seven Trp-Asp (WD) repeats, an SH3 domain, and numerous SH3-binding sites. The gene is expressed strongly in embryonic hindbrain and forebrain, and our data suggest that AHI1 is required for both cerebellar and cortical development in humans. The recently described mutations in NPHP1, encoding a protein containing an SH3 domain, in a subset of patients with JS plus nephronophthisis, suggest a shared pathway.


Nature Genetics | 2010

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Enza Maria Valente; Clare V. Logan; Soumaya Mougou-Zerelli; Jeong Ho Lee; Jennifer L. Silhavy; Francesco Brancati; Miriam Iannicelli; Lorena Travaglini; Sveva Romani; Barbara Illi; Matthew Adams; Katarzyna Szymanska; Annalisa Mazzotta; Ji Eun Lee; Jerlyn Tolentino; Dominika Swistun; Carmelo Salpietro; Carmelo Fede; Stacey Gabriel; Carsten Russ; Kristian Cibulskis; Carrie Sougnez; Friedhelm Hildebrandt; Edgar A. Otto; Susanne Held; Bill H. Diplas; Erica E. Davis; Mario Mikula; Charles M. Strom; Bruria Ben-Zeev

Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS. A single G218T mutation (R73L in the protein) was identified in all cases of Ashkenazi Jewish descent (n = 10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in mutant fibroblasts or after knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 formed a complex with Meckelin, which is encoded by a gene also mutated in JSRDs and MKS. Disruption of tmem216 expression in zebrafish caused gastrulation defects similar to those in other ciliary morphants. These data implicate a new family of proteins in the ciliopathies and further support allelism between ciliopathy disorders.


Cell | 2010

SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder

Vincent Cantagrel; Dirk J. Lefeber; Bobby G. Ng; Ziqiang Guan; Jennifer L. Silhavy; Ludwig Lehle; Hans Hombauer; Maciej Adamowicz; Ewa Swiezewska; Arjan P.M. de Brouwer; Peter Blümel; Jolanta Sykut-Cegielska; Scott Houliston; Dominika Swistun; Bassam R. Ali; William B. Dobyns; Dusica Babovic-Vuksanovic; Hans van Bokhoven; Ron A. Wevers; Christian R. H. Raetz; Hudson H. Freeze; Eva Morava; Lihadh Al-Gazali; Joseph G. Gleeson

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


robotics and applications | 2012

Exome Sequencing Can Improve Diagnosis and Alter Patient Management

Tracy Dixon-Salazar; Jennifer L. Silhavy; Nitin Udpa; Jana Schroth; Ashleigh E. Schaffer; Jesus Olvera; Vineet Bafna; Maha S. Zaki; Ghada M.H. Abdel-Salam; Lobna Mansour; Laila Selim; Sawsan Abdel-Hadi; Naima Marzouki; Tawfeg Ben-Omran; Nouriya A. Al-Saana; F. Müjgan Sönmez; Figen Celep; Matloob Azam; Kiley J. Hill; Adrienne Collazo; Ali G. Fenstermaker; Gaia Novarino; Naiara Akizu; Kiran Garimella; Carrie Sougnez; Carsten Russ; Stacey Gabriel; Joseph G. Gleeson

Exome sequencing of 118 patients with neurodevelopmental disorders shows that this technique is useful for identifying new pathogenic mutations and for correcting diagnosis in ~10% of cases. A Needle in a Haystack Exome sequencing enables evaluation of all protein-coding variants in an individual genome and promises to revolutionize the practice of clinical genetics as it moves from the lab into the clinic. Bringing this technology to the clinic affords the opportunity not just to identify new disease-causing mutations but also to clarify disease presentation and diagnosis. There are many challenges to implementing this technology, however, including which patients to select for analysis, how to rank and prioritize the genetic variants, and how to align the data with the clinical record. In new work, Dixon-Salazar et al. studied a cohort of 118 probands with genetic forms of neurodevelopmental disease, all derived from consanguineous unions, using exome sequencing. All patients were previously excluded for genes most likely to cause their disease. The authors analyzed the exome sequences with a standardized bioinformatic pipeline. They found mutations in known disease-causing genes that in about 10% of cases led to a change in the underlying diagnosis. In 19% of cases, they identified mutations in genes not previously linked to disease. In the remaining cases, the genetic causes remained elusive. Thus, exome sequencing may both improve diagnosis and lead to alterations in patient management in some patients with neurodevelopmental disorders. However, analysis of more than one individual will be required to increase the success rate of identifying the causative mutation in most cases. The translation of “next-generation” sequencing directly to the clinic is still being assessed but has the potential for genetic diseases to reduce costs, advance accuracy, and point to unsuspected yet treatable conditions. To study its capability in the clinic, we performed whole-exome sequencing in 118 probands with a diagnosis of a pediatric-onset neurodevelopmental disease in which most known causes had been excluded. Twenty-two genes not previously identified as disease-causing were identified in this study (19% of cohort), further establishing exome sequencing as a useful tool for gene discovery. New genes identified included EXOC8 in Joubert syndrome and GFM2 in a patient with microcephaly, simplified gyral pattern, and insulin-dependent diabetes. Exome sequencing uncovered 10 probands (8% of cohort) with mutations in genes known to cause a disease different from the initial diagnosis. Upon further medical evaluation, these mutations were found to account for each proband’s disease, leading to a change in diagnosis, some of which led to changes in patient management. Our data provide proof of principle that genomic strategies are useful in clarifying diagnosis in a proportion of patients with neurodevelopmental disorders.


Science | 2012

Mutations in BCKD-kinase Lead to a Potentially Treatable Form of Autism with Epilepsy

Gaia Novarino; Paul El-Fishawy; Hülya Kayserili; Nagwa A. Meguid; Eric Scott; Jana Schroth; Jennifer L. Silhavy; Majdi Kara; Rehab O. Khalil; Tawfeg Ben-Omran; Adife Gulhan Ercan-Sencicek; Adel F. Hashish; Stephan J. Sanders; Abha R. Gupta; Hebatalla S. Hashem; Dietrich Matern; Stacey Gabriel; Larry Sweetman; Yasmeen Rahimi; Robert A. Harris; Matthew W. State; Joseph G. Gleeson

A Fine Balance Intellectual and neurological disabilities can arise from diverse developmental aberrations. Novarino et al. (p. 394, published online 6 September; see the Perspective by Beaudet) have now determined the genetic basis for one such disorder for a small group of patients. Exome sequencing led to identification of mutations in a kinase BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) that regulates metabolism of branched-chain amino acids such as valine, leucine, and isoleucine. Mice with homozygous mutations in the BCKDK gene showed developmental and neurological abnormalities resembling those in certain mouse autism models. Analysis of transport mechanisms responsible for carrying amino acids across the blood-brain barrier revealed competition between the branched-chain amino acids and large neutral amino acids. Nutritional supplementation with extra branched-chain amino acids in the diet of mice carrying homozygous mutations in the BCKDK gene normalized their phenotype. When the balance of branched-chain amino acids transported into the brain goes awry, neurological deficits can ensue. Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1α subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1α phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome.


Nature Medicine | 2009

Impaired Wnt–β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy

Madeline A. Lancaster; Carrie M. Louie; Jennifer L. Silhavy; Louis Sintasath; Marvalyn DeCambre; Sanjay K. Nigam; Karl Willert; Joseph G. Gleeson

Cystic kidney disease represents a major cause of end-stage renal disease, yet the molecular mechanisms of pathogenesis remain largely unclear. Recent emphasis has been placed on a potential role for canonical Wnt signaling, but investigation of this pathway in adult renal homeostasis is lacking. Here we provide evidence of a previously unidentified canonical Wnt activity in adult mammalian kidney homeostasis, the loss of which leads to cystic kidney disease. Loss of the Jouberin (Jbn) protein in mouse leads to the cystic kidney disease nephronophthisis, owing to an unexpected decrease in endogenous Wnt activity. Jbn interacts with and facilitates β-catenin nuclear accumulation, resulting in positive modulation of downstream transcription. Finally, we show that Jbn is required in vivo for a Wnt response to injury and renal tubule repair, the absence of which triggers cystogenesis.


Annals of Neurology | 2006

AHI1 gene mutations cause specific forms of Joubert syndrome–related disorders

Enza Maria Valente; Francesco Brancati; Jennifer L. Silhavy; Marco Castori; Sarah E. Marsh; Giuseppe Barrano; Enrico Bertini; Eugen Boltshauser; Maha S. Zaki; Alice Abdel-Aleem; Ghada M. H. Abdel-Salam; Emanuele Bellacchio; Roberta Battini; Robert P. Cruse; William B. Dobyns; Kalpathy S. Krishnamoorthy; Clotilde Lagier-Tourenne; Alex Magee; Ignacio Pascual-Castroviejo; Carmelo Salpietro; Dean Sarco; Bruno Dallapiccola; Joseph G. Gleeson

Joubert syndrome (JS) is a recessively inherited developmental brain disorder with several identified causative chromosomal loci. It is characterized by hypoplasia of the cerebellar vermis and a particular midbrain‐hindbrain “molar tooth” sign, a finding shared by a group of Joubert syndrome–related disorders (JSRDs), with wide phenotypic variability. The frequency of mutations in the first positionally cloned gene, AHI1, is unknown.


Nature Genetics | 2012

CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium

Ji Eun Lee; Jennifer L. Silhavy; Maha S. Zaki; Jana Schroth; Sarah E. Marsh; Jesus Olvera; Francesco Brancati; Miriam Iannicelli; Koji Ikegami; Andrew M. Schlossman; Barry Merriman; Tania Attié-Bitach; Clare V. Logan; Ian A. Glass; Andrew Cluckey; Carrie M. Louie; Jeong Ho Lee; Hilary R. Raynes; Isabelle Rapin; Ignacio P. Castroviejo; Mitsutoshi Setou; Clara Barbot; Eugen Boltshauser; Stanley F. Nelson; Friedhelm Hildebrandt; Colin A. Johnson; Dan Doherty; Enza Maria Valente; Joseph G. Gleeson

Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.

Collaboration


Dive into the Jennifer L. Silhavy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maha S. Zaki

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihadh Al-Gazali

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Brancati

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Eric Scott

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Schroth

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge