Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. Speth is active.

Publication


Featured researches published by Jennifer M. Speth.


Nature Medicine | 2012

Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis

Hal E. Broxmeyer; Jonathan Hoggatt; Heather A. O'Leary; Charlie Mantel; Brahmananda R. Chitteti; Scott Cooper; Steven Messina-Graham; Giao Hangoc; Sherif S. Farag; Sara Rohrabaugh; Xuan Ou; Jennifer M. Speth; Louis M. Pelus; Edward F. Srour; Timothy B. Campbell

Enhancement of hematopoietic recovery after radiation, chemotherapy, or hematopoietic stem cell (HSC) transplantation is clinically relevant. Dipeptidylpeptidase (DPP4) cleaves a wide variety of substrates, including the chemokine stromal cell-derived factor-1 (SDF-1). In the course of experiments showing that inhibition of DPP4 enhances SDF-1–mediated progenitor cell survival, ex vivo cytokine expansion and replating frequency, we unexpectedly found that DPP4 has a more general role in regulating colony-stimulating factor (CSF) activity. DPP4 cleaved within the N-termini of the CSFs granulocyte-macrophage (GM)-CSF, G-CSF, interleukin-3 (IL-3) and erythropoietin and decreased their activity. Dpp4 knockout or DPP4 inhibition enhanced CSF activities both in vitro and in vivo. The reduced activity of DPP4-truncated versus full-length human GM-CSF was mechanistically linked to effects on receptor-binding affinity, induction of GM-CSF receptor oligomerization and signaling capacity. Hematopoiesis in mice after radiation or chemotherapy was enhanced in Dpp4−/− mice or mice receiving an orally active DPP4 inhibitor. DPP4 inhibition enhanced engraftment in mice without compromising HSC function, suggesting the potential clinical utility of this approach.


Nature | 2013

Differential Stem and Progenitor Cell Trafficking by Prostaglandin E2

Jonathan Hoggatt; Khalid S. Mohammad; Pratibha Singh; Amber F. Hoggatt; Brahmananda R. Chitteti; Jennifer M. Speth; Peirong Hu; Bradley Poteat; Kayla N. Stilger; Francesca Ferraro; Lev Silberstein; Frankie Wong; Sherif S. Farag; Magdalena Czader; Ginger L. Milne; Richard M. Breyer; Carlos H. Serezani; David T. Scadden; Theresa A. Guise; Edward F. Srour; Louis M. Pelus

To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC–niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1–CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.


Blood | 2014

Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment

Jennifer M. Speth; Jonathan Hoggatt; Pratibha Singh; Louis M. Pelus

Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for a number of immunologic disorders. For effective transplant, HSCs must traffic from the peripheral blood to supportive bone marrow niches. We previously showed that HSC trafficking can be enhanced by ex vivo treatment of hematopoietic grafts with 16-16 dimethyl prostaglandin E2 (dmPGE2). While exploring regulatory molecules involved in dmPGE2 enhancement, we found that transiently increasing the transcription factor hypoxia-inducible factor 1-α (HIF1α) is required for dmPGE2-enhanced CXCR4 upregulation and enhanced migration and homing of stem and progenitor cells and that pharmacologic manipulation of HIF1α is also capable of enhancing homing and engraftment. We also now identify the specific hypoxia response element required for CXCR4 upregulation. These data define a precise mechanism through which ex vivo pulse treatment with dmPGE2 enhances the function of hematopoietic stem and progenitor cells; these data also define a role for hypoxia and HIF1α in enhancement of hematopoietic transplantation.


Blood | 2012

Blockade of prostaglandin E2 signaling through EP1 and EP3 receptors attenuates Flt3L-dependent dendritic cell development from hematopoietic progenitor cells.

Pratibha Singh; Jonathan Hoggatt; Peirong Hu; Jennifer M. Speth; Seiji Fukuda; Richard M. Breyer; Louis M. Pelus

Dendritic cell (DC) homeostasis, like all mature blood cells, is maintained via hierarchal generation from hematopoietic precursors; however, little is known about the regulatory mechanisms governing DC generation. Here, we show that prostaglandin E(2) (PGE(2)) is required for optimal Flt3 ligand-mediated DC development and regulates expression of the Flt3 receptor on DC-committed progenitor cells. Inhibition of PGE(2) biosynthesis reduces Flt3-mediated activation of STAT3 and expression of the antiapoptotic protein survivin, resulting in increased apoptosis of DC-committed progenitor cells. Reduced DC development caused by diminished PGE(2) signaling is reversed by overexpression of Flt3 or survivin in DC progenitors and conversely is mimicked by STAT3 inhibition. PGE(2) regulation of DC generation is specifically mediated through the EP1 and EP3 G protein PGE(2) receptors. These studies define a novel DC progenitor regulatory pathway in which PGE(2) signaling through EP1/EP3 receptors regulates Flt3 expression and downstream STAT3 activation and survivin expression, required for optimal DC progenitor survival and DC development in vivo.


Stem Cells | 2013

Concise review: Sowing the seeds of a fruitful harvest: hematopoietic stem cell mobilization.

Jonathan Hoggatt; Jennifer M. Speth; Louis M. Pelus

Hematopoietic stem cell transplantation is the only curative option for a number of malignant and nonmalignant diseases. As the use of hematopoietic transplant has expanded, so too has the source of stem and progenitor cells. The predominate source of stem and progenitors today, particularly in settings of autologous transplantation, is mobilized peripheral blood. This review will highlight the historical advances which led to the widespread use of peripheral blood stem cells for transplantation, with a look toward future enhancements to mobilization strategies. Stem Cells 2013;31:2599–2606


Leukemia | 2015

Survivin modulates genes with divergent molecular functions and regulates proliferation of hematopoietic stem cells through Evi-1

Seiji Fukuda; Jonathan Hoggatt; Pratibha Singh; Mariko Abe; Jennifer M. Speth; Peirong Hu; Edward M. Conway; Giuseppina Nucifora; Seiji Yamaguchi; Louis M. Pelus

The inhibitor of apoptosis protein Survivin regulates hematopoiesis, although its mechanisms of regulation of hematopoietic stem cells (HSCs) remain largely unknown. While investigating conditional Survivin deletion in mice, we found that Survivin was highly expressed in phenotypically defined HSCs, and Survivin deletion in mice resulted in significantly reduced total marrow HSCs and hematopoietic progenitor cells. Transcriptional analysis of Survivin−/− HSCs revealed altered expression of multiple genes not previously linked to Survivin activity. In particular, Survivin deletion significantly reduced expression of the Evi-1 transcription factor indispensable for HSC function, and the downstream Evi-1 target genes Gata2, Pbx1 and Sall2. The loss of HSCs following Survivin deletion and impaired long-term HSC repopulating function could be partially rescued by ectopic Evi-1 expression in Survivin −/− HSCs. These data demonstrate that Survivin partially regulates HSC function by modulating the Evi-1 transcription factor and its downstream targets and identify new genetic pathways in HSCs regulated by Survivin.


Journal of Clinical Investigation | 2017

Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells

Pratibha Singh; Jonathan Hoggatt; Malgorzata M. Kamocka; Khalid S. Mohammad; Mary R. Saunders; Hongge Li; Jennifer M. Speth; Nadia Carlesso; Theresa A. Guise; Louis M. Pelus

Endothelial cells (ECs) are components of the hematopoietic microenvironment and regulate hematopoietic stem and progenitor cell (HSPC) homeostasis. Cytokine treatments that cause HSPC trafficking to peripheral blood are associated with an increase in dipeptidylpeptidase 4/CD26 (DPP4/CD26), an enzyme that truncates the neurotransmitter neuropeptide Y (NPY). Here, we show that enzymatically altered NPY signaling in ECs caused reduced VE-cadherin and CD31 expression along EC junctions, resulting in increased vascular permeability and HSPC egress. Moreover, selective NPY2 and NPY5 receptor antagonists restored vascular integrity and limited HSPC mobilization, demonstrating that the enzymatically controlled vascular gateway specifically opens by cleavage of NPY by CD26 signaling via NPY2 and NPY5 receptors. Mice lacking CD26 or NPY exhibited impaired HSPC trafficking that was restored by treatment with truncated NPY. Thus, our results point to ECs as gatekeepers of HSPC trafficking and identify a CD26-mediated NPY axis that has potential as a pharmacologic target to regulate hematopoietic trafficking in homeostatic and stress conditions.


Journal of Clinical Investigation | 2018

FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis

Loka Raghu Kumar Penke; Jennifer M. Speth; Vijaya L. Dommeti; Eric S. White; Ingrid L. Bergin; Marc Peters-Golden

While the transcription factor forkhead box M1 (FOXM1) is well known as a proto-oncogene, its potential role in lung fibroblast activation has never been explored. Here, we show that FOXM1 is more highly expressed in fibrotic than in normal lung fibroblasts in humans and mice. FOXM1 was required not only for cell proliferation in response to mitogens, but also for myofibroblast differentiation and apoptosis resistance elicited by TGF-&bgr;. The lipid mediator PGE2, acting via cAMP signaling, was identified as an endogenous negative regulator of FOXM1. Finally, genetic deletion of FOXM1 in fibroblasts or administration of the FOXM1 inhibitor Siomycin A in a therapeutic protocol attenuated bleomycin-induced pulmonary fibrosis. Our results identify FOXM1 as a driver of lung fibroblast activation and underscore the therapeutic potential of targeting FOXM1 for pulmonary fibrosis.


Stem Cells | 2013

Sowing the Seeds of a Fruitful Harvest: Hematopoietic Stem Cell Mobilization

Jonathan Hoggatt; Jennifer M. Speth; Louis M. Pelus

Hematopoietic stem cell transplantation is the only curative option for a number of malignant and nonmalignant diseases. As the use of hematopoietic transplant has expanded, so too has the source of stem and progenitor cells. The predominate source of stem and progenitors today, particularly in settings of autologous transplantation, is mobilized peripheral blood. This review will highlight the historical advances which led to the widespread use of peripheral blood stem cells for transplantation, with a look toward future enhancements to mobilization strategies. Stem Cells 2013;31:2599–2606


Stem Cells | 2013

Concise Review: Sowing the Seeds of a Fruitful Harvest: Hematopoietic Stem Cell Mobilization: HSC Mobilization

Jonathan Hoggatt; Jennifer M. Speth; Louis M. Pelus

Hematopoietic stem cell transplantation is the only curative option for a number of malignant and nonmalignant diseases. As the use of hematopoietic transplant has expanded, so too has the source of stem and progenitor cells. The predominate source of stem and progenitors today, particularly in settings of autologous transplantation, is mobilized peripheral blood. This review will highlight the historical advances which led to the widespread use of peripheral blood stem cells for transplantation, with a look toward future enhancements to mobilization strategies. Stem Cells 2013;31:2599–2606

Collaboration


Dive into the Jennifer M. Speth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppina Nucifora

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge