Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer M. Williams is active.

Publication


Featured researches published by Jennifer M. Williams.


Journal of Molecular Biology | 2010

Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6.

Jill E. Chrencik; Akshay Patny; Iris K. Leung; Brian Korniski; Thomas L. Emmons; Troii Hall; Robin A. Weinberg; Jennifer A. Gormley; Jennifer M. Williams; Jacqueline E. Day; Jeffrey L. Hirsch; James R. Kiefer; Joseph W. Leone; H. David Fischer; Cynthia D. Sommers; Horng-Chih Huang; E.J. Jacobsen; Ruth E. Tenbrink; Alfredo G. Tomasselli; Timothy E. Benson

Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.


Journal of Biological Chemistry | 2008

High Resolution Crystal Structure of the Catalytic Domain of ADAMTS-5 (Aggrecanase-2)

Huey-Sheng Shieh; Karl J. Mathis; Jennifer M. Williams; Robert Hills; Joe F. Wiese; Timothy E. Benson; James R. Kiefer; Margaret H. Marino; Jeffery N. Carroll; Joseph W. Leone; Anne-Marie Malfait; Elizabeth C. Arner; Micky D. Tortorella; Alfredo G. Tomasselli

Aggrecanase-2 (a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5)), a member of the ADAMTS protein family, is critically involved in arthritic diseases because of its direct role in cleaving the cartilage component aggrecan. The catalytic domain of aggrecanase-2 has been refolded, purified, and crystallized, and its three-dimensional structure determined to 1.4Å resolution in the presence of an inhibitor. A high resolution structure of an ADAMTS/aggrecanase protein provides an opportunity for the development of therapeutics to treat osteoarthritis.


Journal of Medicinal Chemistry | 2010

Orally Active MMP-1 Sparing α-Tetrahydropyranyl and α-Piperidinyl Sulfone Matrix Metalloproteinase (MMP) Inhibitors with Efficacy in Cancer, Arthritis, and Cardiovascular Disease

Daniel P. Becker; Thomas E. Barta; Louis J. Bedell; Terri L. Boehm; Brian R. Bond; Jeffery N. Carroll; Chris P. Carron; Gary A Decrescenzo; Alan M. Easton; John N. Freskos; Chris L. Funckes-Shippy; Marcia I. Heron; Susan L. Hockerman; Carol Pearcy Howard; James R. Kiefer; Madeleine H. Li; Karl J. Mathis; Joseph J. Mcdonald; Pramod P. Mehta; Grace E. Munie; Teresa Sunyer; Craig Swearingen; Clara I. Villamil; Dean Welsch; Jennifer M. Williams; Ying Yu; Jun Yao

α-Sulfone-α-piperidine and α-tetrahydropyranyl hydroxamates were explored that are potent inhibitors of MMPs-2, -9, and -13 that spare MMP-1, with oral efficacy in inhibiting tumor growth in mice and left-ventricular hypertrophy in rats and in the bovine cartilage degradation ex vivo explant system. α-Piperidine 19v (SC-78080/SD-2590) was selected for development toward the initial indication of cancer, while α-piperidine and α-tetrahydropyranyl hydroxamates 19w (SC-77964) and 9i (SC-77774), respectively, were identified as backup compounds.


Journal of Biological Chemistry | 2009

Structural and Inhibition Analysis Reveals the Mechanism of Selectivity of a Series of Aggrecanase Inhibitors

Micky D. Tortorella; Alfredo G. Tomasselli; Karl J. Mathis; Mark E. Schnute; Scott S. Woodard; Grace E. Munie; Jennifer M. Williams; Nicole Caspers; Arthur J. Wittwer; Anne-Marie Malfait; Huey-Sheng Shieh

Several inhibitors of a series of cis-1(S)2(R)-amino-2-indanol-based compounds were reported to be selective for the aggrecanases, ADAMTS-4 and -5 over other metalloproteases. To understand the nature of this selectivity for aggrecanases, the inhibitors, along with the broad spectrum metalloprotease inhibitor marimastat, were independently bound to the catalytic domain of ADAMTS-5, and the corresponding crystal structures were determined. By comparing the structures, it was determined that the specificity of the relative inhibitors for ADAMTS-5 was not driven by a specific interaction, such as zinc chelation, hydrogen bonding, or charge interactions, but rather by subtle and indirect factors, such as water bridging, ring rigidity, pocket size, and shape, as well as protein conformation flexibility.


Biochemistry | 2009

Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

Li Xing; Huey Shieh; Shaun R. Selness; Rajesh Devraj; John K. Walker; Balekudru Devadas; Heidi R. Hope; Robert P. Compton; John F. Schindler; Jeffrey L. Hirsch; Alan G. Benson; Ravi G. Kurumbail; Roderick A. Stegeman; Jennifer M. Williams; Richard M. Broadus; Zara Walden; Joseph B. Monahan

PH-797804 is a diarylpyridinone inhibitor of p38alpha mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38alpha inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38alpha kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180 degrees rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38alpha kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38alpha kinase inhibitors.


Journal of Medicinal Chemistry | 2011

Discovery of Potent Inhibitors of Soluble Epoxide Hydrolase by Combinatorial Library Design and Structure-Based Virtual Screening

Li Xing; Joseph J. Mcdonald; Steve A. Kolodziej; Ravi G. Kurumbail; Jennifer M. Williams; Chad J. Warren; Janet M. O'neal; Jill E. Skepner; Steven L. Roberds

Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.


Protein Expression and Purification | 2010

Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain

Troii Hall; Thomas L. Emmons; Jill E. Chrencik; Jennifer A. Gormley; Robin A. Weinberg; Joseph W. Leone; Jeffrey L. Hirsch; Matthew Saabye; John F. Schindler; Jacqueline E. Day; Jennifer M. Williams; James R. Kiefer; Sandra Lightle; Melissa S. Harris; Siradanahalli Guru; H. David Fischer; Alfredo G. Tomasselli

Janus-associated kinases (JAKs) play critical roles in cytokine signaling, and have emerged as viable therapeutic targets in inflammation and oncology related diseases. To date, targeting JAK proteins with highly selective inhibitor compounds have remained elusive. We have expressed the active kinase domains for both JAK2 and JAK3 and devised purification protocols to resolve the non-, mono- (Y1007) and diphosphorylated (Y1007 and Y1008) states of JAK2 and non- and monophosphorylated states of JAK3 (Y980). An optimal purified protein yield of 20, 29 and 69mg per 20L cell culture was obtained for the three JAK2 forms, respectively, and 12.2 and 2.3mg per 10L fermentation for the two JAK3 forms allowing detailed biochemical and biophysical studies. To monitor the purification process we developed a novel HPLC activity assay where a sequential order of phosphorylation was observed whereby the first tyrosine residue was completely phosphorylated prior to phosphorylation of the tandem tyrosine residue. A Caliper-based microfluidics assay was used to determine the kinetic parameters (K(m) and k(cat)) for each phosphorylated state, showing that monophosphorylated (Y1007) JAK2 enzyme activity increased 9-fold over that of the nonphosphorylated species, and increased an additional 6-fold for the diphosphorylated (Y1007/Y1008) species, while phosphorylation of JAK3 resulted in a negligible increase in activity. Moreover, crystal structures have been generated for each isolated state of JAK2 and JAK3 with resolutions better than 2.4A. The generation of these reagents has enabled kinetic and structural characterization to inform the design of potent and selective inhibitors of the JAK family.


Protein Science | 2011

Structure analysis reveals the flexibility of the ADAMTS-5 active site.

Huey-Sheng Shieh; Alfredo G. Tomasselli; Karl J. Mathis; Mark E. Schnute; Scott S. Woodard; Nicole Caspers; Jennifer M. Williams; James R. Kiefer; Grace E. Munie; Arthur J. Wittwer; Anne-Marie Malfait; Micky D. Tortorella

A ((1S,2R)‐2‐hydroxy‐2,3‐dihydro‐1H‐inden‐1‐yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP‐2, MMP‐8, MMP‐9, and MMP‐13. Modeling studies had predicted that this compound would not bind to ADAMTS‐5 (a disintegrin and metalloproteinase with thrombospondin motifs‐5) due to its shallow S1′ pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS‐4 and −5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS‐5 (cataTS5) exhibits an unusual conformation in the S1′ pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.


Bioorganic & Medicinal Chemistry Letters | 2009

Investigation of aminopyridiopyrazinones as PDE5 inhibitors: Evaluation of modifications to the central ring system.

Robert O. Hughes; John K. Walker; Jerry W. Cubbage; Yvette M. Fobian; D. Joseph Rogier; Steve E. Heasley; Rhadika M. Blevis-Bal; Alan G. Benson; Dafydd R. Owen; E. Jon Jacobsen; John N. Freskos; John M. Molyneaux; David L. Brown; William C. Stallings; Brad A. Acker; Todd Michael Maddux; Mike B. Tollefson; Jennifer M. Williams; Joseph B. Moon; Brent V. Mischke; Jeanne M. Rumsey; Yi Zheng; Alan MacInnes; Brian R. Bond; Ying Yu

Efforts to improve the potency and physical properties of the aminopyridiopyrazinone class of PDE5 inhibitors through modification of the core ring system are described. Five new ring systems are evaluated and features that impart improved potency and improved solubility are delineated.


Bioorganic & Medicinal Chemistry Letters | 2011

MMP-13 selective α-sulfone hydroxamates: a survey of P1' heterocyclic amide isosteres.

Thomas E. Barta; Daniel P. Becker; Louis J. Bedell; Alan M. Easton; Susan L. Hockerman; James R. Kiefer; Grace E. Munie; Karl J. Mathis; Madeleine H. Li; Joseph G. Rico; Clara I. Villamil; Jennifer M. Williams

Seeking compounds preferentially potent and selective for MMP-13, we reported in the preceding Letter on a series of hydroxamic acids with a flexible benzamide tail groups.(1a) Here, we replace the amide moiety with non-hydrolyzable heterocycles in an effort to improve half-life. We identify a hydroxamate tetrazole 4e that spares MMP-1 and -14, shows >400-fold selectivity versus MMP-8 and >600-fold selectivity versus MMP-2, and has a 4.8 h half-life in rats. X-ray data (1.9 Å) for tetrazole 4c is presented.

Collaboration


Dive into the Jennifer M. Williams's collaboration.

Researchain Logo
Decentralizing Knowledge