Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer O'Neil is active.

Publication


Featured researches published by Jennifer O'Neil.


Proceedings of the National Academy of Sciences of the United States of America | 2006

NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth

Teresa Palomero; Wei Keat Lim; Duncan T. Odom; Maria Luisa Sulis; Pedro J. Real; Adam A. Margolin; Kelly Barnes; Jennifer O'Neil; Donna Neuberg; Andrew P. Weng; François Sigaux; Jean Soulier; A. Thomas Look; Richard A. Young; Adolfo A. Ferrando

The NOTCH1 signaling pathway directly links extracellular signals with transcriptional responses in the cell nucleus and plays a critical role during T cell development and in the pathogenesis over 50% of human T cell lymphoblastic leukemia (T-ALL) cases. However, little is known about the transcriptional programs activated by NOTCH1. Using an integrative systems biology approach we show that NOTCH1 controls a feed-forward-loop transcriptional network that promotes cell growth. Inhibition of NOTCH1 signaling in T-ALL cells led to a reduction in cell size and elicited a gene expression signature dominated by down-regulated biosynthetic pathway genes. By integrating gene expression array and ChIP-on-chip data, we show that NOTCH1 directly activates multiple biosynthetic routes and induces c-MYC gene expression. Reverse engineering of regulatory networks from expression profiles showed that NOTCH1 and c-MYC govern two directly interconnected transcriptional programs containing common target genes that together regulate the growth of primary T-ALL cells. These results identify c-MYC as an essential mediator of NOTCH1 signaling and integrate NOTCH1 activation with oncogenic signaling pathways upstream of c-MYC.


Journal of Experimental Medicine | 2007

FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors

Jennifer O'Neil; Jonathan E. Grim; Peter Strack; Sudhir Rao; Deanne Tibbitts; Christopher Winter; James S. Hardwick; Markus Welcker; Jules P.P. Meijerink; Rob Pieters; Giulio Draetta; Rosalie C. Sears; Bruce E. Clurman; A. Thomas Look

γ-secretase inhibitors (GSIs) can block NOTCH receptor signaling in vitro and therefore offer an attractive targeted therapy for tumors dependent on deregulated NOTCH activity. To clarify the basis for GSI resistance in T cell acute lymphoblastic leukemia (T-ALL), we studied T-ALL cell lines with constitutive expression of the NOTCH intracellular domain (NICD), but that lacked C-terminal truncating mutations in NOTCH1. Each of the seven cell lines examined and 7 of 81 (8.6%) primary T-ALL samples harbored either a mutation or homozygous deletion of the gene FBW7, a ubiquitin ligase implicated in NICD turnover. Indeed, we show that FBW7 mutants cannot bind to the NICD and define the phosphodegron region of the NICD required for FBW7 binding. Although the mutant forms of FBW7 were still able to bind to MYC, they do not target it for degradation, suggesting that stabilization of both NICD and its principle downstream target, MYC, may contribute to transformation in leukemias with FBW7 mutations. In addition, we show that all seven leukemic cell lines with FBW7 mutations were resistant to the MRK-003 GSI. Most of these resistant lines also failed to down-regulate the mRNA levels of the NOTCH targets MYC and DELTEX1 after treatment with MRK-003, implying that residual NOTCH signaling in T-ALLs with FBW7 mutations contributes to GSI resistance.


Nature | 2007

Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers

Richard S. Maser; Bhudipa Choudhury; Peter J. Campbell; Bin Feng; Kwok-Kin Wong; Alexei Protopopov; Jennifer O'Neil; Alejandro Gutierrez; Elena Ivanova; Ilana Perna; Eric Lin; Vidya Mani; Shan Jiang; Kate McNamara; Sara Zaghlul; Sarah Edkins; Claire Stevens; Cameron Brennan; Eric Martin; Ruprecht Wiedemeyer; Omar Kabbarah; Cristina Nogueira; Gavin Histen; Marc R. Mansour; Veronique Duke; Letizia Foroni; Adele K. Fielding; Anthony H. Goldstone; Jacob M. Rowe; Yaoqi A. Wang

Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.


Mechanisms of Development | 1999

DORSAL AND VENTRAL RETINAL TERRITORIES DEFINED BY RETINOIC ACID SYNTHESIS,BREAK-DOWN AND NUCLEAR RECEPTOR EXPRESSION

Peter McCaffery; Elisabeth Wagner; Jennifer O'Neil; Martin Petkovich; Ursula C. Dräger

Determination of the dorso-ventral dimension of the vertebrate retina is known to involve retinoic acid (RA), in that high RA activates expression of a ventral retinaldehyde dehydrogenase and low RA of a dorsal dehydrogenase. Here we show that in the early eye vesicle of the mouse embryo, expression of the dorsal dehydrogenase is preceded by, and transiently overlaps with, the RA-degrading oxidase CYP26. Subsequently in the embryonic retina, CYP26 forms a narrow horizontal boundary between the dorsal and ventral dehydrogenases, creating a trough between very high ventral and moderately high dorsal RA levels. Most of the RA receptors are expressed uniformly throughout the retina except for the RA-sensitive RARbeta, which is down-regulated in the CYP26 stripe. The orphan receptor COUP-TFII, which modulates RA responses, colocalizes with the dorsal dehydrogenase. The organization of the embryonic vertebrate retina into dorsal and ventral territories divided by a horizontal boundary has parallels to the division of the Drosophila eye disc into dorsal, equatorial and ventral zones, indicating that the similarities in eye morphogenesis extend beyond single molecules to topographical patterns.


Cancer Research | 2009

Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells.

Sudhir Rao; Jennifer O'Neil; Cole Liberator; James S. Hardwick; Xudong Dai; Theresa Zhang; Edyta Tyminski; Jing Yuan; Nancy E. Kohl; Victoria M. Richon; Lex H.T. Van der Ploeg; Pamela Carroll; Giulio Draetta; A. Thomas Look; Peter Strack; Christopher Winter

NOTCH signaling is deregulated in the majority of T-cell acute lymphoblastic leukemias (T-ALL) as a result of activating mutations in NOTCH1. Gamma secretase inhibitors (GSI) block proteolytic activation of NOTCH receptors and may provide a targeted therapy for T-ALL. We have investigated the mechanisms of GSI sensitivity across a panel of T-ALL cell lines, yielding an approach for patient stratification based on pathway activity and also providing a rational combination strategy for enhanced response to GSI. Whereas the NOTCH1 mutation status does not serve as a predictor of GSI sensitivity, a gene expression signature of NOTCH pathway activity does correlate with response, and may be useful in the selection of patients more likely to respond to GSI. Furthermore, inhibition of the NOTCH pathway activity signature correlates with the induction of the cyclin-dependent kinase inhibitors CDKN2D (p19(INK4d)) and CDKN1B (p27(Kip1)), leading to derepression of RB and subsequent exit from the cell cycle. Consistent with this evidence of cell cycle exit, short-term exposure of GSI resulted in sustained molecular and phenotypic effects after withdrawal of the compound. Combination treatment with GSI and a small molecule inhibitor of CDK4 produced synergistic growth inhibition, providing evidence that GSI engagement of the CDK4/RB pathway is an important mechanism of GSI action and supports further investigation of this combination for improved efficacy in treating T-ALL.


Journal of Experimental Medicine | 2007

Alu elements mediate MYB gene tandem duplication in human T-ALL

Jennifer O'Neil; Joelle Tchinda; Alejandro Gutierrez; Lisa A. Moreau; Richard S. Maser; Kwok-Kin Wong; Wei Li; Keith McKenna; X. Shirley Liu; Bin Feng; Donna Neuberg; Lewis B. Silverman; Daniel J. DeAngelo; Jeffery L. Kutok; Rodney Rothstein; Ronald A. DePinho; Lynda Chin; Charles Lee; A. Thomas Look

Recent studies have demonstrated that the MYB oncogene is frequently duplicated in human T cell acute lymphoblastic leukemia (T-ALL). We find that the human MYB locus is flanked by 257-bp Alu repeats and that the duplication is mediated somatically by homologous recombination between the flanking Alu elements on sister chromatids. Nested long-range PCR analysis indicated a low frequency of homologous recombination leading to MYB tandem duplication in the peripheral blood mononuclear cells of ∼50% of healthy individuals, none of whom had a MYB duplication in the germline. We conclude that Alu-mediated MYB tandem duplication occurs at low frequency during normal thymocyte development and is clonally selected during the molecular pathogenesis of human T-ALL.


Oncogene | 2001

The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice.

Jennifer O'Neil; Marilisa Billa; Sarah Oikemus; Michelle A. Kelliher

Activation of the basic helix–loop–helix (bHLH) gene TAL-1 (or SCL) is the most frequent gain-of-function mutation in pediatric T cell acute lymphoblastic leukemia (T-ALL). Similarly, mis-expression of tal-1 in the thymus of transgenic mice results in the development of clonal T cell lymphoblastic leukemia. To determine the mechanism(s) of tal-1-induced leukemogenesis, we created transgenic mice expressing a DNA binding mutant of tal-1. Surprisingly, these mice develop disease, demonstrating that the DNA binding properties of tal-1 are not required to induce leukemia/lymphoma in mice. However, wild type tal-1 and the DNA binding mutant both form stable complexes with E2A proteins. In addition, tal-1 stimulates differentiation of CD8-single positive thymocytes but inhibits the development of CD4-single positive cells: effects also observed in E2A-deficient mice. Our study suggests that the bHLH protein tal-1 contributes to leukemia by interfering with E2A protein function(s).


Leukemia | 2006

Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias

Teresa Palomero; Keith McKenna; Jennifer O'Neil; Ilene Galinsky; Richard Stone; K Suzukawa; E Stiakaki; M Kalmanti; E A Fox; M A Caligiuri; A T Look; Adolfo A. Ferrando

Activating mutations in NOTCH1 are found in over 50% of human T-cell lymphoblastic leukemias (T-ALLs). Here, we report the analysis for activating NOTCH1 mutations in a large number of acute myeloid leukemia (AML) primary samples and cell lines. We found activating mutations in NOTCH1 in a single M0 primary AML sample, in three (ML1, ML2 and CTV-1) out of 23 AML cell lines and in the diagnostic (myeloid) and relapsed (T-lymphoid) clones in a patient with lineage switch leukemia. Importantly, the ML1 and ML2 AML cell lines are derived from an AML relapse in a patient initially diagnosed with T-ALL. Overall, these results demonstrate that activating mutations in NOTCH1 are mostly restricted to T-ALL and are rare in AMLs. The presence of NOTCH1 mutations in myeloid and T-lymphoid clones in lineage switch leukemias establishes the common clonal origin of the diagnostic and relapse blast populations and suggests a stem cell origin of NOTCH1 mutations during the molecular pathogenesis of these tumors.


Blood | 2010

Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia

Takaomi Sanda; Xiaoyu Li; Alejandro Gutierrez; Yebin Ahn; Donna Neuberg; Jennifer O'Neil; Peter Strack; Christopher Winter; Stuart S. Winter; Richard S. Larson; Harald von Boehmer; A. Thomas Look

To identify dysregulated pathways in distinct phases of NOTCH1-mediated T-cell leukemogenesis, as well as small-molecule inhibitors that could synergize with or substitute for gamma-secretase inhibitors (GSIs) in T-cell acute lymphoblastic leukemia (T-ALL) therapy, we compared gene expression profiles in a Notch1-induced mouse model of T-ALL with those in human T-ALL. The overall patterns of NOTCH1-mediated gene expression in human and mouse T-ALLs were remarkably similar, as defined early in transformation in the mouse by the regulation of MYC and its target genes and activation of nuclear factor-kappaB and PI3K/AKT pathways. Later events in murine Notch1-mediated leukemogenesis included down-regulation of genes encoding tumor suppressors and negative cell cycle regulators. Gene set enrichment analysis and connectivity map algorithm predicted that small-molecule inhibitors, including heat-shock protein 90, histone deacetylase, PI3K/AKT, and proteasome inhibitors, could reverse the gene expression changes induced by NOTCH1. When tested in vitro, histone deacetylase, PI3K and proteasome inhibitors synergized with GSI in suppressing T-ALL cell growth in GSI-sensitive cells. Interestingly, alvespimycin, a potent inhibitor of the heat-shock protein 90 molecular chaperone, markedly inhibited the growth of both GSI-sensitive and -resistant T-ALL cells, suggesting that its loss disrupts signal transduction pathways crucial for the growth and survival of T-ALL cells.


Molecular Cancer Therapeutics | 2016

An Unbiased Oncology Compound Screen to Identify Novel Combination Strategies

Jennifer O'Neil; Yair Benita; Igor Feldman; Melissa Chenard; Brian Roberts; Yaping Liu; Jing Li; Astrid M. Kral; Serguei Lejnine; Andrey Loboda; William T. Arthur; Razvan Cristescu; Brian B. Haines; Christopher Winter; Theresa Zhang; Andrew Bloecher; Stuart D. Shumway

Combination drug therapy is a widely used paradigm for managing numerous human malignancies. In cancer treatment, additive and/or synergistic drug combinations can convert weakly efficacious monotherapies into regimens that produce robust antitumor activity. This can be explained in part through pathway interdependencies that are critical for cancer cell proliferation and survival. However, identification of the various interdependencies is difficult due to the complex molecular circuitry that underlies tumor development and progression. Here, we present a high-throughput platform that allows for an unbiased identification of synergistic and efficacious drug combinations. In a screen of 22,737 experiments of 583 doublet combinations in 39 diverse cancer cell lines using a 4 by 4 dosing regimen, both well-known and novel synergistic and efficacious combinations were identified. Here, we present an example of one such novel combination, a Wee1 inhibitor (AZD1775) and an mTOR inhibitor (ridaforolimus), and demonstrate that the combination potently and synergistically inhibits cancer cell growth in vitro and in vivo. This approach has identified novel combinations that would be difficult to reliably predict based purely on our current understanding of cancer cell biology. Mol Cancer Ther; 15(6); 1155–62. ©2016 AACR.

Collaboration


Dive into the Jennifer O'Neil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge