Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Strack is active.

Publication


Featured researches published by Peter Strack.


Journal of Experimental Medicine | 2007

FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors

Jennifer O'Neil; Jonathan E. Grim; Peter Strack; Sudhir Rao; Deanne Tibbitts; Christopher Winter; James S. Hardwick; Markus Welcker; Jules P.P. Meijerink; Rob Pieters; Giulio Draetta; Rosalie C. Sears; Bruce E. Clurman; A. Thomas Look

γ-secretase inhibitors (GSIs) can block NOTCH receptor signaling in vitro and therefore offer an attractive targeted therapy for tumors dependent on deregulated NOTCH activity. To clarify the basis for GSI resistance in T cell acute lymphoblastic leukemia (T-ALL), we studied T-ALL cell lines with constitutive expression of the NOTCH intracellular domain (NICD), but that lacked C-terminal truncating mutations in NOTCH1. Each of the seven cell lines examined and 7 of 81 (8.6%) primary T-ALL samples harbored either a mutation or homozygous deletion of the gene FBW7, a ubiquitin ligase implicated in NICD turnover. Indeed, we show that FBW7 mutants cannot bind to the NICD and define the phosphodegron region of the NICD required for FBW7 binding. Although the mutant forms of FBW7 were still able to bind to MYC, they do not target it for degradation, suggesting that stabilization of both NICD and its principle downstream target, MYC, may contribute to transformation in leukemias with FBW7 mutations. In addition, we show that all seven leukemic cell lines with FBW7 mutations were resistant to the MRK-003 GSI. Most of these resistant lines also failed to down-regulate the mRNA levels of the NOTCH targets MYC and DELTEX1 after treatment with MRK-003, implying that residual NOTCH signaling in T-ALLs with FBW7 mutations contributes to GSI resistance.


Cancer Research | 2007

Oxygen Concentration Determines the Biological Effects of NOTCH-1 Signaling in Adenocarcinoma of the Lung

Yuanbin Chen; Melissa A. De Marco; Irene Graziani; Adi F. Gazdar; Peter Strack; Lucio Miele; Maurizio Bocchetta

NOTCH signaling is an evolutionarily conserved signaling pathway that regulates cell fate during development and postnatal life. It has been increasingly linked to carcinogenesis, although its role in cancer seems to be highly context and tissue specific. Although NOTCH signaling is required for lung development, little is known about its role in lung cancer. In this study, we show that NOTCH signaling, as measured by the gamma-secretase cleavage product N(IC)-1, is active in both normal human and lung tumor samples; however, downstream NOTCH readouts (i.e., HES-1 and HES-5) are elevated in lung tumors. Levels of NOTCH signaling components in primary human lung cells reflect observations in tissue samples, yet lung tumor cell lines showed little NOTCH signaling. Because oxygen concentrations are important in normal lung physiology and lung tumors are hypoxic, the effect of low oxygen on these lung tumor cell lines was evaluated. We found that hypoxia dramatically elevates NOTCH signaling (especially NOTCH-1) in lung tumor cell lines and concomitantly sensitizes them to inhibition via small-molecule gamma-secretase inhibitors or NOTCH-1 RNA interference. gamma-Secretase inhibitor-induced apoptosis of lung tumor cells grown under hypoxic conditions could be rescued by reintroduction of active NOTCH-1. Our data strengthen the role of NOTCH in lung cancer and as a therapeutic target for the treatment of lung and other hypoxic tumor types.


Cancer Research | 2009

Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells.

Sudhir Rao; Jennifer O'Neil; Cole Liberator; James S. Hardwick; Xudong Dai; Theresa Zhang; Edyta Tyminski; Jing Yuan; Nancy E. Kohl; Victoria M. Richon; Lex H.T. Van der Ploeg; Pamela Carroll; Giulio Draetta; A. Thomas Look; Peter Strack; Christopher Winter

NOTCH signaling is deregulated in the majority of T-cell acute lymphoblastic leukemias (T-ALL) as a result of activating mutations in NOTCH1. Gamma secretase inhibitors (GSI) block proteolytic activation of NOTCH receptors and may provide a targeted therapy for T-ALL. We have investigated the mechanisms of GSI sensitivity across a panel of T-ALL cell lines, yielding an approach for patient stratification based on pathway activity and also providing a rational combination strategy for enhanced response to GSI. Whereas the NOTCH1 mutation status does not serve as a predictor of GSI sensitivity, a gene expression signature of NOTCH pathway activity does correlate with response, and may be useful in the selection of patients more likely to respond to GSI. Furthermore, inhibition of the NOTCH pathway activity signature correlates with the induction of the cyclin-dependent kinase inhibitors CDKN2D (p19(INK4d)) and CDKN1B (p27(Kip1)), leading to derepression of RB and subsequent exit from the cell cycle. Consistent with this evidence of cell cycle exit, short-term exposure of GSI resulted in sustained molecular and phenotypic effects after withdrawal of the compound. Combination treatment with GSI and a small molecule inhibitor of CDK4 produced synergistic growth inhibition, providing evidence that GSI engagement of the CDK4/RB pathway is an important mechanism of GSI action and supports further investigation of this combination for improved efficacy in treating T-ALL.


Cancer Research | 2008

Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway.

Irene Graziani; Sandra Eliasz; Melissa A. De Marco; Yuanbin Chen; Harvey I. Pass; Richard D. May; Peter Strack; Lucio Miele; Maurizio Bocchetta

Malignant mesothelioma (MM) is a cancer of the lining of the lungs, heart, and intestine and is known to respond poorly to chemotherapy. Here we show that malignant mesothelial cells have an elevated Notch signaling pathway compared with normal human mesothelial cells. We studied the role of Notch in MM under normoxic and hypoxic conditions, the latter condition best recapitulating the MM microenvironment. Genetic and chemical modulation of the Notch pathway indicated that MM cells are dependent on Notch signaling. More specifically, this signaling was Notch-1 dependent as the result of its negative transcriptional regulation on phosphatase and tensin homologue (PTEN), which led to activation of the prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Our study also provides evidence that whereas Notch-1 is elevated in the malignant setting, Notch-2 is diminished. This differential expression of the two Notch isoforms benefits cancer cell survival because reexpression of Notch-2 was toxic to MM cells. The mechanism of Notch-2 toxicity to MM cells countered that of Notch-1, as it was the result of positive transcriptional regulation of PTEN and inhibition of the PI3K/Akt/mTOR signaling pathway. These results provide new insight into the role of Notch in MM and suggest that Notch pathway inhibitors may be useful in the treatment of this deadly disease.


Cancer Research | 2010

Downregulation of Notch Pathway by a γ-Secretase Inhibitor Attenuates AKT/Mammalian Target of Rapamycin Signaling and Glucose Uptake in an ERBB2 Transgenic Breast Cancer Model

Clay Efferson; Christopher T. Winkelmann; Christopher Ware; Timothy Sullivan; Saverio Giampaoli; Jennifer Tammam; Shailendra Patel; Giuseppe Mesiti; John F. Reilly; Raymond E. Gibson; Carolyn A. Buser; Timothy J. Yeatman; Domenico Coppola; Christopher Winter; Edwin Clark; Giulio Draetta; Peter Strack; Pradip K. Majumder

ERBB2/neu and Notch signaling are known to be deregulated in many human cancers. However, pathway cross-talk and dependencies are not well understood. In this study, we use an ERBB2-transgenic mouse model of breast cancer (neuT) to show that Notch signaling plays a critical role in tumor maintenance. Inhibition of the Notch pathway with a gamma-secretase inhibitor (GSI) decreased both the Notch and the mammalian target of rapamycin/AKT pathways. Antitumor activity resulting from GSI treatment was associated with decreased cell proliferation as measured by Ki67 and decreased expression of glucose transporter Glut1. Positron emission tomography (PET) imaging showed that the functional consequences of decreased Glut1 translated to reduced glucose uptake and correlated with antitumor effects as measured by micro-computed tomography imaging. The decrease of Glut1 in neuT tumors was also observed in several human breast cancer cell lines following GSI treatment. We provide evidence that approximately 27% of ERBB2-positive human breast cancer specimens display high expression of HES1, phospho-S6RP, and GLUT1. Together, these results suggest that pathways downstream of Notch signaling are, at least in part, responsible for promoting tumor growth in neuT and also active in both neuT and a subset of human breast cancers. These findings suggest that GSI may provide therapeutic benefit to a subset of ERBB2-positive breast cancers and that [(18)F]FDG-PET imaging may be useful in monitoring clinical response.


Genes & Cancer | 2010

Inhibition of Notch Signaling Blocks Growth of Glioblastoma Cell Lines and Tumor Neurospheres

Jie Chen; Santosh Kesari; Christine Rooney; Peter Strack; Jihua Chen; Huangxuan Shen; Lizi Wu; James D. Griffin

Glioblastoma (GBM) is the most common malignant brain tumor that is characterized by high proliferative rate and invasiveness. Since dysregulation of Notch signaling is implicated in the pathogenesis of many human cancers, here we investigated the role of Notch signaling in GBM. We found that there is aberrant activation of Notch signaling in GBM cell lines and human GBM-derived neurospheres. Inhibition of Notch signaling via the expression of a dominant negative form of the Notch coactivator, mastermind-like 1 (DN-MAML1), or the treatment of a γ-secretase inhibitor, (GSI) MRK-003, resulted in a significant reduction in GBM cell growth in vitro and in vivo. Knockdown of individual Notch receptors revealed that Notch1 and Notch2 receptors differentially contributed to GBM cell growth, with Notch2 having a predominant role. Furthermore, blockade of Notch signaling inhibited the proliferation of human GBM-derived neurospheres in vitro and in vivo. Our overall data indicate that Notch signaling contributes significantly to optimal GBM growth, strongly supporting that the Notch pathway is a promising therapeutic target for GBM.


Cancer Research | 2005

Valosin-Containing Protein Phosphorylation at Ser784 in Response to DNA Damage

Mark Livingstone; Hong Ruan; Jessica Weiner; Karl R. Clauser; Peter Strack; Shengfang Jin; Amy Williams; Heidi Greulich; James Gardner; Monica Venere; Tamara A. Mochan; Richard A. DiTullio; Katarina Moravcevic; Vassilis G. Gorgoulis; Anne L. Burkhardt; Thanos D. Halazonetis

The response of eukaryotic cells to DNA damage includes the activation of phosphatidylinositol-3 kinase-related kinases (PIKK), such as ATM, ATR, and DNA-dependent protein kinase (DNA-PK). These three kinases have very similar substrate specificities in vitro, but in vivo, their substrates overlap only partially. Several in vivo substrates of ATM and ATR have been identified and almost all of them are involved in DNA damage-induced cell cycle arrest and/or apoptosis. In contrast, few in vivo substrates of DNA-PK have been identified. These include histone H2AX and DNA-PK itself. We identify here valosin-containing protein (VCP) as a novel substrate of DNA-PK and other PIKK family members. VCP is phosphorylated at Ser784 within its COOH terminus, a region previously shown to target VCP to specific intracellular compartments. Furthermore, VCP phosphorylated at Ser784 accumulated at sites of DNA double-strand breaks (DSBs). VCP is a protein chaperone that unfolds and translocates proteins. Its phosphorylation in response to DNA damage and its recruitment to sites of DNA DSBs could indicate a role of VCP in DNA repair.


Blood | 2010

Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia

Takaomi Sanda; Xiaoyu Li; Alejandro Gutierrez; Yebin Ahn; Donna Neuberg; Jennifer O'Neil; Peter Strack; Christopher Winter; Stuart S. Winter; Richard S. Larson; Harald von Boehmer; A. Thomas Look

To identify dysregulated pathways in distinct phases of NOTCH1-mediated T-cell leukemogenesis, as well as small-molecule inhibitors that could synergize with or substitute for gamma-secretase inhibitors (GSIs) in T-cell acute lymphoblastic leukemia (T-ALL) therapy, we compared gene expression profiles in a Notch1-induced mouse model of T-ALL with those in human T-ALL. The overall patterns of NOTCH1-mediated gene expression in human and mouse T-ALLs were remarkably similar, as defined early in transformation in the mouse by the regulation of MYC and its target genes and activation of nuclear factor-kappaB and PI3K/AKT pathways. Later events in murine Notch1-mediated leukemogenesis included down-regulation of genes encoding tumor suppressors and negative cell cycle regulators. Gene set enrichment analysis and connectivity map algorithm predicted that small-molecule inhibitors, including heat-shock protein 90, histone deacetylase, PI3K/AKT, and proteasome inhibitors, could reverse the gene expression changes induced by NOTCH1. When tested in vitro, histone deacetylase, PI3K and proteasome inhibitors synergized with GSI in suppressing T-ALL cell growth in GSI-sensitive cells. Interestingly, alvespimycin, a potent inhibitor of the heat-shock protein 90 molecular chaperone, markedly inhibited the growth of both GSI-sensitive and -resistant T-ALL cells, suggesting that its loss disrupts signal transduction pathways crucial for the growth and survival of T-ALL cells.


Clinical Cancer Research | 2008

Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells.

Yanai Zhan; Nicole Ginanni; Michael R. Tota; Margaret Wu; Nathan Bays; Victoria M. Richon; Nancy E. Kohl; Eric Bachman; Peter Strack; Stefan Krauss

Purpose: For many tumor cells, de novo lipogenesis is a requirement for growth and survival. A considerable body of work suggests that inhibition of this pathway may be a powerful approach to antineoplastic therapy. It has recently been shown that inhibition of various steps in the lipogenic pathway individually can induce apoptosis or loss of viability in tumor cells. However, it is not clear whether quantitative differences exist in the ability of lipogenic enzymes to control tumor cell survival. We present a systematic approach that allows for a direct comparison of the control of lipogenic pathway enzymes over tumor cell growth and apoptosis using different cancer cells. Experimental Design: RNA interference-mediated, graded down-regulation of fatty acid synthase (FAS) pathway enzymes was employed in combination with measurements of lipogenesis, apoptosis, and cell growth. Results: In applying RNA interference titrations to two lipogenic enzymes, acetyl-CoA carboxylase 1 (ACC1) and FAS, we show that ACC1 and FAS both significantly control cell growth and apoptosis in HCT-116 cells. These results also extend to PC-3 and A2780 cancer cells. Conclusions: Control of tumor cell survival by different steps in de novo lipogenesis can be quantified. Because ACC1 and FAS both significantly control tumor cell growth and apoptosis, we propose that pharmacologic inhibitors of either enzyme might be useful agents in targeting cancer cells that critically rely on fatty acid synthesis. The experimental approach described here may be extended to other targets or disease-relevant pathways to identify steps suitable for therapeutic intervention.


Molecular Cancer Therapeutics | 2015

Combined Inhibition of Cyclin-Dependent Kinases (Dinaciclib) and AKT (MK-2206) Blocks Pancreatic Tumor Growth and Metastases in Patient-Derived Xenograft Models

Chaoxin Hu; Tikva Dadon; Venugopal Chenna; Shinichi Yabuuchi; Rajat Bannerji; Robert Booher; Peter Strack; Nilofer A Azad; Barry D. Nelkin; Anirban Maitra

KRAS is activated by mutation in the vast majority of cases of pancreatic cancer; unfortunately, therapeutic attempts to inhibit KRAS directly have been unsuccessful. Our previous studies showed that inhibition of cyclin-dependent kinase 5 (CDK5) reduces pancreatic cancer growth and progression, through blockage of the centrally important RAL effector pathway, downstream of KRAS. In the current study, the therapeutic effects of combining the CDK inhibitor dinaciclib (SCH727965; MK-7965) with the pan-AKT inhibitor MK-2206 were evaluated using orthotopic and subcutaneous patient-derived human pancreatic cancer xenograft models. The combination of dinaciclib (20 mg/kg, i.p., three times a week) and MK-2206 (60 mg/kg, orally, three times a week) dramatically blocked tumor growth and metastasis in all eight pancreatic cancer models examined. Remarkably, several complete responses were induced by the combination treatment of dinaciclib and MK-2206. The striking results obtained in these models demonstrate that the combination of dinaciclib with the pan-AKT inhibitor MK-2206 is promising for therapeutic evaluation in pancreatic cancer, and strongly suggest that blocking RAL in combination with other effector pathways downstream from KRAS may provide increased efficacy in pancreatic cancer. Based on these data, an NCI–CTEP-approved multicenter phase I clinical trial for pancreatic cancer of the combination of dinaciclib and MK-2206 (NCT01783171) has now been opened. Mol Cancer Ther; 14(7); 1532–9. ©2015 AACR.

Collaboration


Dive into the Peter Strack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge