Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer R. McKelvie is active.

Publication


Featured researches published by Jennifer R. McKelvie.


Analytical and Bioanalytical Chemistry | 2009

Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil

Myrna J. Simpson; Jennifer R. McKelvie

AbstractEnvironmental metabolomics is a growing and emerging sub-discipline of metabolomics. Studies with earthworms have progressed from the initial stages of simple contact exposure tests to detailed studies of earthworm responses in soil. Over the past decade, a variety of endogenous metabolites have been identified as potential biomarkers of contaminant exposure. Furthermore, metabolomic methods have delineated responses from sub-lethal exposure of earthworms to polycyclic aromatic hydrocarbons and metals in soil suggesting that environmental metabolomics may be used as a direct measure of contaminant bioavailability in soil. Environmental metabolomics has the potential to fill knowledge gaps related to earthworm toxicity and contaminant bioavailability. However, challenges with metabolite quantification and limited systems-level models of metabolic data require improvement before detailed models of “normal” responses can be developed and used routinely in assessment of contaminated sites. Nonetheless, environmental metabolomics is poised to improve our fundamental understanding of earthworm responses and toxicity to contaminants in soil. FigurePrincipal component analysis (PCA) scores plots of earthworm metabolic profiles measured by 1H NMR spectroscopy after exposure to sub-lethal concentrations of phenanthrene in soil.


Environmental Pollution | 2010

1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil

Sarah A. E. Brown; Jennifer R. McKelvie; André J. Simpson; Myrna J. Simpson

1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-beta-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised approximately 65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.


Environmental Pollution | 2010

Correlations of Eisenia fetida metabolic responses to extractable phenanthrene concentrations through time

Jennifer R. McKelvie; David M. Wolfe; Magda Celejewski; André J. Simpson; Myrna J. Simpson

Eisenia fetida earthworms were exposed to phenanthrene for thirty days to compare hydroxypropyl-beta-cyclodextrin (HPCD) extraction of soil and 1H NMR earthworm metabolomics as indicators of bioavailability. The phenanthrene 28-d LC50 value was 750 mg/kg (632-891, 95% confidence intervals) for the peat soil tested. The initial phenanthrene concentration was 319 mg/kg, which biodegraded to 16 mg/kg within 15 days, at which time HPCD extraction suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of 1H NMR spectra for E. fetida tissue extracts indicated that phenanthrene exposed and control earthworms differed throughout the 30 day experiment despite the low phenanthrene concentrations present after 15 days. This metabolic response was better correlated to total phenanthrene concentrations (Q2 = 0.59) than HPCD-extractable phenanthrene concentrations (Q2 = 0.46) suggesting that 1H NMR metabolomics offers considerable promise as a novel, molecular-level method to directly monitor the bioavailability of contaminants to earthworms in the environment.


Environmental Chemistry | 2010

Comparison of 1-D and 2-D NMR techniques for screening earthworm responses to sub-lethal endosulfan exposure

Jimmy Yuk; Jennifer R. McKelvie; Myrna J. Simpson; Manfred Spraul; André J. Simpson

Environmental context The application of metabolomics from an environmental perspective depends on the analytical ability to discriminate minute changes in the organism resulting from exposure. In this study, 1-D and 2-D Nuclear Magnetic Resonance (NMR) experiments were examined to characterise the earthworm’s metabolic response to an organochlorine pesticide. 2-D NMR showed considerable improvement in discriminating exposed worms from controls and in identifying the metabolites responsible. This study demonstrates the potential of 2-D NMR in understanding subtle biochemical responses resulting from environmental exposure. Abstract Nuclear Magnetic Resonance (NMR) based metabolomics is a powerful approach to monitoring an organism’s metabolic response to environmental exposure. However, the discrimination between exposed and control groups, depends largely on the NMR technique chosen. Here, three 1-D NMR and three 2-D NMR techniques were investigated for their ability to discriminate between control earthworms (Eisenia fetida) and those exposed to a sub-lethal concentration of a commonly occurring organochlorine pesticide, endosulfan. Partial least-squares discriminant analysis found 1H–13C Heteronuclear Single Quantum Coherence (HSQC) spectroscopy to have the highest discrimination with a MANOVA value (degree of separation) three orders lower than any of the 1-D and 2-D NMR techniques. HSQC spectroscopy identified alanine, leucine, lysine, glutamate, glucose and maltose as the major metabolites of exposure to endosulfan, more than all the other techniques combined. HSQC spectroscopy in combination with a shorter 1-D experiment may prove to be an effective tool for the discrimination and identification of significant metabolites in organisms under environmental stress.


Environmental Pollution | 2011

Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action.

Jennifer R. McKelvie; David M. Wolfe; Magda Celejewski; Mehran Alaee; André J. Simpson; Myrna J. Simpson

Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.


Environmental Science & Technology | 2010

Quantitative Site-Specific 2H NMR Investigation of MTBE: Potential for Assessing Contaminant Sources and Fate

Jennifer R. McKelvie; Martin Elsner; André J. Simpson; Barbara Sherwood Lollar; Myrna J. Simpson

Site-specific isotopic values of methyl tertiary butyl ether (MTBE) were measured using quantitative site-specific (2)H nuclear magnetic resonance (NMR) spectroscopy for seven commercially available MTBE products. The delta(2)H values of the methoxy and tertiary butyl groups ranged from -103 per thousand to -171 per thousand, and from -76 per thousand to -104 per thousand, reflecting their production from methanol and isobutene, respectively. Several MTBE products whose whole-compound delta(13)C and delta(2)H MTBE values were within error of each other, as measured by isotope ratio mass spectrometry (IRMS), had demonstrably different delta(2)H values for their methoxy and tertiary butyl groups measured by (2)H NMR. Site-specific isotopic variations were large enough to provide proof of principle that quantitative site-specific (2)H NMR may provide an additional parameter for contaminant sourcing at field sites. Isotopic variations were small enough to not bias the comparability of degradation-associated isotopic enrichment factors determined using different MTBE products. Calculated delta(2)H values for MTBE, derived as weighted averages of (2)H NMR measurements of the two functional groups, showed good agreement with IRMS measurements. The ability to gain accurate information about the site-specific isotopic ratios of (2)H/(1)H within a molecule offers considerable promise as a new environmental tool to track the source and fate of environmental contaminants.


Environmental Pollution | 2013

Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content

Jennifer R. McKelvie; Melissa L. Whitfield Åslund; Magda Celejewski; André J. Simpson; Myrna J. Simpson

We evaluated the correlation between soil organic carbon (OC) content and metabolic responses of Eisenia fetida earthworms after exposure to phenanthrene (58 ± 3 mg/kg) spiked into seven artificial soils with OC contents ranging from 1 to 27% OC. Principal component analysis of (1)H nuclear magnetic resonance (NMR) spectra of aqueous extracts identified statistically significant differences in the metabolic profiles of control and phenanthrene-exposed E. fetida in the 1% OC soil only. Partial least squares analysis identified a metabolic response in the four soils with OC values ≤11% which was well correlated to estimated phenanthrene porewater concentrations. The results suggest that the higher sorption capability of high OC soils decreased the bioavailability of phenanthrene and the subsequent metabolic response of E. fetida.


Journal of Microbiological Methods | 2016

Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage

Wendy Stone; Otini Kroukamp; Ana Moes; Jennifer R. McKelvie; Darren R. Korber; Gideon M. Wolfaardt

Genomics enjoys overwhelming popularity in the study of microbial ecology. However, extreme or atypical environments often limit the use of such well-established tools and consequently demand a novel approach. The bentonite clay matrix proposed for use in Deep Geological Repositories for the long-term storage of used nuclear fuel is one such challenging microbial habitat. Simple, accessible tools were developed for the study of microbial ecology and metabolic processes that occur within this habitat, since the understanding of the microbiota-niche interaction is fundamental to describing microbial impacts on engineered systems such as compacted bentonite barriers. Even when genomic tools are useful for the study of community composition, techniques to describe such microbial impacts and niche interactions should complement these. Tools optimised for assessing localised microbial activity within bentonite included: (a) the qualitative use of the resazurin-resorufin indicator system for redox localisation, (b) the use of a CaCl2 buffer for the localisation of pH, and (c) fluorometry for the localisation of precipitated sulphide. The use of the Carbon Dioxide Evolution Monitoring System was also validated for measuring microbial activity in desiccated and saturated bentonite. Finally, the buffering of highly-basic bentonite at neutral pH improved the success of isolation of microbial populations, but not DNA, from the bentonite matrix. Thus, accessible techniques were optimised for exploring microbial metabolism in the atypical environments of clay matrices and desiccated conditions. These tools have application to the applied field of used nuclear fuel management, as well as for examining the fundamental biogeochemical cycles active in sedimentary and deep geological environments.


Frontiers in Microbiology | 2016

Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

Wendy Stone; Otini Kroukamp; Darren R. Korber; Jennifer R. McKelvie; Gideon M. Wolfaardt

The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation.


Archive | 2016

Microbiology of the Deep Subsurface Geosphere and Its Implications for Used Nuclear Fuel Repositories

Jennifer R. McKelvie; Darren R. Korber; Gideon M. Wolfaardt

A number of countries are actively working toward the siting and development of deep geological repositories (DGR) for used nuclear fuel. Given their ubiquity and metabolic capabilities, it is assumed that with sufficient time and appropriate conditions, microorganisms could alter the geochemistry of the repository. As such, the DGR concept provides an invaluable opportunity to evaluate the evolution of subsurface conditions from “disturbance” back to original state. The design concept involves the use of steel or copper/steel used fuel containers, surrounded by a low-permeability, swelling clay buffer material within a low-permeability, stable host rock environment. Within a newly constructed DGR, conditions would be warm, oxidizing, and dry. With sufficient time, these conditions would gradually revert to the original state of the surrounding geology. This chapter discusses how microbes and their metabolic activity may change over time and discusses the potential effects they may have on the engineered barrier system (EBS) that serves to isolate the used fuel containers and on the used fuel itself. The widespread support for the development of underground facilities as a means to ensure safe, long-term storage of increasing inventory of nuclear waste underscores the pressing need to learn more about the impacts of microbial activity on the performance of such facilities over the long term.

Collaboration


Dive into the Jennifer R. McKelvie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren R. Korber

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge