Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer S. Dickey is active.

Publication


Featured researches published by Jennifer S. Dickey.


Nature Reviews Cancer | 2008

GammaH2AX and cancer.

William M. Bonner; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Olga A. Sedelnikova; Stéphanie Solier; Yves Pommier

Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.


Nature Reviews Cancer | 2008

γH2AX and cancer

William M. Bonner; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Olga A. Sedelnikova; Stéphanie Solier; Yves Pommier

Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.


Mutation Research-reviews in Mutation Research | 2010

Role of oxidatively induced DNA lesions in human pathogenesis

Olga A. Sedelnikova; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Alexandros G. Georgakilas; William M. Bonner

Genome stability is essential for maintaining cellular and organismal homeostasis, but it is subject to many threats. One ubiquitous threat is from a class of compounds known as reactive oxygen species (ROS), which can indiscriminately react with many cellular biomolecules including proteins, lipids, and DNA to produce a variety of oxidative lesions. These DNA oxidation products are a direct risk to genome stability, and of particular importance are oxidative clustered DNA lesions (OCDLs), defined as two or more oxidative lesions present within 10 bp of each other. ROS can be produced by exposure of cells to exogenous environmental agents including ionizing radiation, light, chemicals, and metals. In addition, they are produced by cellular metabolism including mitochondrial ATP generation. However, ROS also serve a variety of critical cellular functions and optimal ROS levels are maintained by multiple cellular antioxidant defenses. Oxidative DNA lesions can be efficiently repaired by base excision repair or nucleotide excision repair. If ROS levels increase beyond the capacity of its antioxidant defenses, the cells DNA repair capacity can become overwhelmed, leading to the accumulation of oxidative DNA damage products including OCDLs, which are more difficult to repair than individual isolated DNA damage products. Here we focus on the induction and repair of OCDLs and other oxidatively induced DNA lesions. If unrepaired, these lesions can lead to the formation of mutations, DNA DSBs, and chromosome abnormalities. We discuss the roles of these lesions in human pathologies including aging and cancer, and in bystander effects.


Chromosoma | 2009

H2AX: functional roles and potential applications.

Jennifer S. Dickey; Christophe E. Redon; Asako J. Nakamura; Brandon J. Baird; Olga A. Sedelnikova; William M. Bonner

Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX, becomes rapidly phosphorylated at serine 139. This modified form, termed γ-H2AX, is easily identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review focuses on the potential clinical applications of γ-H2AX detection in cancer and in response to other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed. Recent work indicates that γ-H2AX detection may become a powerful tool for monitoring genotoxic events associated with cancer development and tumor progression.


Carcinogenesis | 2009

Intercellular communication of cellular stress monitored by γ-H2AX induction

Jennifer S. Dickey; Brandon J. Baird; Christophe E. Redon; Mykyta V. Sokolov; Olga A. Sedelnikova; William M. Bonner

When cells are exposed to ionizing radiation (IR), unexposed cells that share media with damaged cells exhibit similar effects to irradiated cells including increased levels of DNA double-strand breaks (DSBs). Hypothesizing that this effect, known as the radiation-induced bystander effect, may be a specific instance of communication between damaged and undamaged cells regardless of damage source, we demonstrated that exposure of target cells to non-IR induces bystander damage in non-targeted cells as measured by gamma-H2AX and 53BP1 focal formation. Initially, bystander damage was found primarily in S-phase cells, but at later times, non-S-phase cells were also affected. In addition, media from undamaged malignant and senescent cells also was found to induce DSBs in primary cultures. Media conditioned on cells targeted with either ionizing or non-IR as well as on undamaged malignant and senescent cells contained elevated levels of several cytokines. One of these, transforming growth factor beta (TGF-beta), and nitric oxide (NO) were found to elevate numbers of gamma-H2AX/53BP1 foci in normal cell cultures similar to levels found in bystander cells, and this elevation was abrogated by NO synthase inhibitors, TGF-beta blocking antibody and antioxidants. These findings support the hypothesis that damage in bystander cells results from their exposure to cytokines or reactive compounds released from stressed cells, regardless of damage source. These results have implications for oncogenesis in that they indicate that damaged normal cells or undamaged tumor cells may induce genomic instability, leading to an increased risk of oncogenic transformation in other cells with which they share media or contact directly.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Tumors induce complex DNA damage in distant proliferative tissues in vivo

Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Irina Kareva; Dieter Näf; Somaira Nowsheen; Thomas B. Kryston; William M. Bonner; Alexandros G. Georgakilas; Olga A. Sedelnikova

That tumors cause changes in surrounding tissues is well documented, but whether they also affect distant tissues is uncertain. Such knowledge may be important in understanding the relationship between cancer and overall patient health. To address this question, we examined tissues distant to sites of implanted tumors for genomic damage using cohorts of C57BL/6 and BALB/c mice with early-stage subcutaneous syngeneic grafts, specifically, B16 melanoma, MO5076 sarcoma, and COLON26 carcinoma. Here we report that levels of two serious types of DNA damage, double-strand breaks (DSBs) measured by γ-H2AX focus formation and oxidatively induced non-DSB clustered DNA lesions (OCDLs), were elevated in tissues distant from the tumor site in tumor-bearing mice compared with their age- and sex-matched controls. Most affected were crypts in the gastrointestinal tract organs and skin, both highly proliferative tissues. Further investigation revealed that, compared with controls, tumor-bearing mice contained elevated amounts of activated macrophages in the distant gastrointestinal tissues, as well as elevated serum levels of several cytokines. One of these cytokines, CCL2/MCP-1, has been linked to several inflammation-related conditions and macrophage recruitment, and strikingly, CCL2-deficient mice lacked increased levels of DSBs and OCDLs in tissues distant from implanted tumors. Thus, this study is unique in being a direct demonstration that the presence of a tumor may induce a chronic inflammatory response in vivo, leading to increased systemic levels of DNA damage. Importantly, these findings suggest that tumors may have more profound effects on their hosts than heretofore expected.


Cell Cycle | 2007

γH2AX in Bystander Cells: Not Just a Radiation-Triggered Event, a Cellular Response to Stress Mediated by Intercellular Communication

Mykyta V. Sokolov; Jennifer S. Dickey; William M. Bonner; Olga A. Sedelnikova

The recent years have witnessed a rapid accumulation of experimental data showing that ionizing radiation elicits a plethora of biological effects in unirradiated cells receiving bystander signals from hit cells. This so-called radiation-induced bystander effect (RIBE) manifests in various ways including changes in gene expression, genetic and epigenetic alterations, as well as increases in cell transformation and cell death. Our group and others found that DNA double-stranded breaks (DSBs), directly measured by the γ-H2AX focus formation assay, accumulate in bystander cells in a number of experimental systems such as human cultured cells, human 3-dimensional tissue models and in mice. In addition, we recently found that various other sources of cell stress, including media from cancerous cells resulted in a DNA damage response (DDR) in normal human cells that is reminiscent of RIBE. These results suggest that the RIBE may be part of a more general stress response, however, the molecular mechanism underpinning the formation of DNA DSBs in bystander cells is still unclear. This extra view points to some possibilities that might explain why DDR in human cells can be observed under bystander conditions.


Journal of Biological Chemistry | 2010

The Antioxidant Transcription Factor Nrf2 Negatively Regulates Autophagy and Growth Arrest Induced by the Anticancer Redox Agent Mitoquinone

V. Ashutosh Rao; Sarah R. Klein; Spencer J. Bonar; Jacek Zielonka; Naoko Mizuno; Jennifer S. Dickey; Paul W. Keller; Joy Joseph; B. Kalyanaraman; Emily Shacter

Mitoquinone (MitoQ) is a synthetically modified, redox-active ubiquinone compound that accumulates predominantly in mitochondria. We found that MitoQ is 30-fold more cytotoxic to breast cancer cells than to healthy mammary cells. MitoQ treatment led to irreversible inhibition of clonogenic growth of breast cancer cells through a combination of autophagy and apoptotic cell death mechanisms. Relatively limited cytotoxicity was seen with the parent ubiquinone coenzyme Q10. Inhibition of cancer cell growth by MitoQ was associated with G1/S cell cycle arrest and phosphorylation of the checkpoint kinases Chk1 and Chk2. The possible role of oxidative stress in MitoQ activity was investigated by measuring the products of hydroethidine oxidation. Increases in ethidium and dihydroethidium levels, markers of one-electron oxidation of hydroethidine, were observed at cytotoxic concentrations of MitoQ. Keap1, an oxidative stress sensor protein that regulates the antioxidant transcription factor Nrf2, underwent oxidation, degradation, and dissociation from Nrf2 in MitoQ-treated cells. Nrf2 protein levels, nuclear localization, and transcriptional activity also increased following MitoQ treatment. Knockdown of Nrf2 caused a 2-fold increase in autophagy and an increase in G1 cell cycle arrest in response to MitoQ but had no apparent effect on apoptosis. The Nrf2-regulated enzyme NQO1 is partly responsible for controlling the level of autophagy. Keap1 and Nrf2 act as redox sensors for oxidative perturbations that lead to autophagy. MitoQ and similar compounds should be further evaluated for novel anticancer activity.


Radiation and Environmental Biophysics | 2011

The role of miRNA in the direct and indirect effects of ionizing radiation.

Jennifer S. Dickey; Franz J. Zemp; Olga A. Martin; Olga Kovalchuk

This review focuses on a number of recent studies that have examined changes in microRNA (miRNA) expression profiles in response to ionizing radiation and other forms of oxidative stress. In both murine and human cells and tissues, a number of miRNAs display significant alterations in expression levels in response to both direct and indirect radiation exposure. In terms of direct irradiation, or exposure to agents that induce oxidative stress, miRNA array analyses indicate that a number of miRNAs are up- and down-regulated and, in particular, the let-7 family of miRNAs may well be critical in the cellular response to oxidative stress. In bystander cells that are not directly irradiated, but close to, or share media with directly irradiated cells or tissues, the miRNA expression profiles are also altered, but are somewhat distinct from the directly irradiated cells. Based on the results of these numerous studies, as well as our own data presented here, we conclude that miRNA regulation is a critical step in the cellular response to radiation and oxidative stress and that future studies should elucidate the mechanisms through which this altered regulation affects cell metabolism.


Nature Reviews Cancer | 2008

|[gamma]|H2AX and cancer

William M. Bonner; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Olga A. Sedelnikova; Stéphanie Solier; Yves Pommier

Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.

Collaboration


Dive into the Jennifer S. Dickey's collaboration.

Top Co-Authors

Avatar

William M. Bonner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christophe E. Redon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Olga A. Sedelnikova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Asako J. Nakamura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexandros G. Georgakilas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Olga A. Martin

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Brandon J. Baird

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Solier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mykyta V. Sokolov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge