Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga A. Sedelnikova is active.

Publication


Featured researches published by Olga A. Sedelnikova.


Nature Reviews Cancer | 2008

GammaH2AX and cancer.

William M. Bonner; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Olga A. Sedelnikova; Stéphanie Solier; Yves Pommier

Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.


Nature Reviews Cancer | 2008

γH2AX and cancer

William M. Bonner; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Olga A. Sedelnikova; Stéphanie Solier; Yves Pommier

Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.


Current Opinion in Genetics & Development | 2002

Histone H2A variants H2AX and H2AZ

Christophe E. Redon; Duane R. Pilch; Emmy Rogakou; Olga A. Sedelnikova; Kenneth Newrock; William M. Bonner

Two of the nucleosomal histone families, H3 and H2A, have highly conserved variants with specialized functions. Recent studies have begun to elucidate the roles of two of the H2A variants, H2AX and H2AZ. H2AX is phosphorylated on a serine four residues from the carboxyl terminus in response to the introduction of DNA double-strand breaks, whether these breaks are a result of environmental insult, metabolic mistake, or programmed process. H2AZ appears to alter nucleosome stability, is partially redundant with nucleosome remodeling complexes, and is involved in transcriptional control.


Nature Cell Biology | 2004

Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks

Olga A. Sedelnikova; Izumi Horikawa; Drazen B. Zimonjic; Nicholas C. Popescu; William M. Bonner; J. Carl Barrett

Humans and animals undergo ageing, and although their primary cells undergo cellular senescence in culture, the relationship between these two processes is unclear. Here we show that γ-H2AX foci (γ-foci), which reveal DNA double-strand breaks (DSBs), accumulate in senescing human cell cultures and in ageing mice. They colocalize with DSB repair factors, but not significantly with telomeres. These cryptogenic γ-foci remain after repair of radiation-induced γ-foci, suggesting that they may represent DNA lesions with unrepairable DSBs. Thus, we conclude that accumulation of unrepairable DSBs may have a causal role in mammalian ageing.


Radiation Research | 2002

Quantitative Detection of 125IdU-Induced DNA Double-Strand Breaks with γ-H2AX Antibody

Olga A. Sedelnikova; Emmy P. Rogakou; Igor G. Panyutin; William M. Bonner

Abstract Sedelnikova, O. A., Rogakou, E. P., Panyutin, I. G. and Bonner, W. M. Quantitative Detection of 125IdU-Induced DNA Double-Strand Breaks with γ-H2AX Antibody. Radiat. Res. 158, 486–492 (2002). When mammalian cells are exposed to ionizing radiation and other agents that introduce DSBs into DNA, histone H2AX molecules in megabase chromatin regions adjacent to the breaks become phosphorylated within minutes on a specific serine residue. An antibody to this phosphoserine motif of human H2AX (γ-H2AX) demonstrates that γ-H2AX molecules appear in discrete nuclear foci. To establish the quantitative relationship between the number of these foci and the number of DSBs, we took advantage of the ability of 125I, when incorporated into DNA, to generate one DNA DSB per radioactive disintegration. SF-268 and HT-1080 cell cultures were grown in the presence of 125IdU and processed immunocytochemically to determine the number of γ-H2AX foci. The numbers of 125IdU disintegrations per cell were measured by exposing the same immunocytochemically processed samples to a radiation-sensitive screen with known standards. Under appropriate conditions, the data yielded a direct correlation between the number of 125I decays and the number of foci per cell, consistent with the assumptions that each 125I decay yields a DNA DSB and each DNA DSB yields a visible γ-H2AX focus. Based on these findings, we conclude that γ-H2AX antibody may form the basis of a sensitive quantitative method for the detection of DNA DSBs in eukaryotic cells.


Cell | 2003

H2AX Haploinsufficiency Modifies Genomic Stability and Tumor Susceptibility

Arkady Celeste; Simone Difilippantonio; Michael J. Difilippantonio; Oscar Fernandez-Capetillo; Duane R. Pilch; Olga A. Sedelnikova; Michael Eckhaus; Thomas Ried; William M. Bonner; André Nussenzweig

Histone H2AX becomes phosphorylated in chromatin domains flanking sites of DNA double-strand breakage associated with gamma-irradiation, meiotic recombination, DNA replication, and antigen receptor rearrangements. Here, we show that loss of a single H2AX allele compromises genomic integrity and enhances the susceptibility to cancer in the absence of p53. In comparison with heterozygotes, tumors arise earlier in the H2AX homozygous null background, and H2AX(-/-) p53(-/-) lymphomas harbor an increased frequency of clonal nonreciprocal translocations and amplifications. These include complex rearrangements that juxtapose the c-myc oncogene to antigen receptor loci. Restoration of the H2AX null allele with wild-type H2AX restores genomic stability and radiation resistance, but this effect is abolished by substitution of the conserved serine phosphorylation sites in H2AX with alanine or glutamic acid residues. Our results establish H2AX as genomic caretaker that requires the function of both gene alleles for optimal protection against tumorigenesis.


Cancer Biology & Therapy | 2003

Histone H2AX in DNA damage and repair.

Olga A. Sedelnikova; Duane R. Pilch; Christophe E. Redon; William M. Bonner

No abstract available.


Mutation Research-reviews in Mutation Research | 2010

Role of oxidatively induced DNA lesions in human pathogenesis

Olga A. Sedelnikova; Christophe E. Redon; Jennifer S. Dickey; Asako J. Nakamura; Alexandros G. Georgakilas; William M. Bonner

Genome stability is essential for maintaining cellular and organismal homeostasis, but it is subject to many threats. One ubiquitous threat is from a class of compounds known as reactive oxygen species (ROS), which can indiscriminately react with many cellular biomolecules including proteins, lipids, and DNA to produce a variety of oxidative lesions. These DNA oxidation products are a direct risk to genome stability, and of particular importance are oxidative clustered DNA lesions (OCDLs), defined as two or more oxidative lesions present within 10 bp of each other. ROS can be produced by exposure of cells to exogenous environmental agents including ionizing radiation, light, chemicals, and metals. In addition, they are produced by cellular metabolism including mitochondrial ATP generation. However, ROS also serve a variety of critical cellular functions and optimal ROS levels are maintained by multiple cellular antioxidant defenses. Oxidative DNA lesions can be efficiently repaired by base excision repair or nucleotide excision repair. If ROS levels increase beyond the capacity of its antioxidant defenses, the cells DNA repair capacity can become overwhelmed, leading to the accumulation of oxidative DNA damage products including OCDLs, which are more difficult to repair than individual isolated DNA damage products. Here we focus on the induction and repair of OCDLs and other oxidatively induced DNA lesions. If unrepaired, these lesions can lead to the formation of mutations, DNA DSBs, and chromosome abnormalities. We discuss the roles of these lesions in human pathologies including aging and cancer, and in bystander effects.


Chromosoma | 2009

H2AX: functional roles and potential applications.

Jennifer S. Dickey; Christophe E. Redon; Asako J. Nakamura; Brandon J. Baird; Olga A. Sedelnikova; William M. Bonner

Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX, becomes rapidly phosphorylated at serine 139. This modified form, termed γ-H2AX, is easily identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review focuses on the potential clinical applications of γ-H2AX detection in cancer and in response to other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed. Recent work indicates that γ-H2AX detection may become a powerful tool for monitoring genotoxic events associated with cancer development and tumor progression.


Oncogene | 2005

Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts.

Mykyta V. Sokolov; Lubomir B. Smilenov; Eric J. Hall; Igor G. Panyutin; William M. Bonner; Olga A. Sedelnikova

That irradiated cells affect their unirradiated ‘bystander’ neighbors is evidenced by reports of increased clonogenic mortality, genomic instability, and expression of DNA-repair genes in the bystander cell populations. The mechanisms underlying the bystander effect are obscure, but genomic instability suggests DNA double-strand breaks (DSBs) may be involved. Formation of DSBs induces the phosphorylation of the tumor suppressor protein, histone H2AX and this phosphorylated form, named γ-H2AX, forms foci at DSB sites. Here we report that irradiation of target cells induces γ-H2AX focus formation in bystander cell populations. The effect is manifested by increases in the fraction of cells in a population that contains multiple γ-H2AX foci. After 18 h coculture with cells irradiated with 20 α-particles, the fraction of bystander cells with multiple foci increased 3.7-fold. Similar changes occurred in bystander populations mixed and grown with cells irradiated with γ-rays, and in cultures containing media conditioned on γ-irradiated cells. DNA DSB repair proteins accumulated at γ-H2AX foci, indicating that they are sites of DNA DSB repair. Lindane, which blocks gap-junctions, prevented the bystander effect in mixing but not in media transfer protocols, while c-PTIO and aminoguanidine, which lower nitric oxide levels, prevented the bystander effect in both protocols. Thus, multiple mechanisms may be involved in transmitting bystander effects. These studies show that H2AX phosphorylation is an early step in the bystander effect and that the DNA DSBs underlying γ-H2AX focus formation may be responsible for its downstream manifestations.

Collaboration


Dive into the Olga A. Sedelnikova's collaboration.

Top Co-Authors

Avatar

William M. Bonner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christophe E. Redon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jennifer S. Dickey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Asako J. Nakamura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Igor G. Panyutin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane R. Pilch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew N. Luu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Olga Kovalchuk

University of Lethbridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge