Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer T. Choy is active.

Publication


Featured researches published by Jennifer T. Choy.


Nano Letters | 2012

Integrated Diamond Networks for Quantum Nanophotonics

Birgit Hausmann; Brendan Shields; Qimin Quan; Patrick Maletinsky; Murray W. McCutcheon; Jennifer T. Choy; T. Babinec; Alexander Kubanek; Amir Yacoby; Mikhail D. Lukin; Marko Loncar

We demonstrate an integrated nanophotonic network in diamond, consisting of a ring resonator coupled to an optical waveguide with grating in- and outcouplers. Using a nitrogen-vacancy color center embedded inside the ring resonator as a source of photons, single photon generation and routing at room temperature is observed. Furthermore, we observe a large overall photon extraction efficiency (10%) and high quality factors of ring resonators (3200 for waveguide-coupled system and 12,600 for a bare ring).


Nature Photonics | 2011

Enhanced single-photon emission from a diamond–silver aperture

Jennifer T. Choy; Birgit Hausmann; Thomas M. Babinec; Irfan Bulu; Mughees Khan; Patrick Maletinsky; Amir Yacoby; Marko Loncar

Directly embedding single nitrogen–vacancy centres into ordered arrays of plasmonic nanostructures can enhance their radiative emission rate and thus give greater scalability over previous bottom-up approaches for the realization of on-chip quantum networks.


Optics Express | 2012

Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices.

Jonathan D. B. Bradley; Christopher C. Evans; Jennifer T. Choy; Orad Reshef; Parag B. Deotare; François Parsy; Katherine C. Phillips; Marko Loncar; Eric Mazur

We demonstrate amorphous and polycrystalline anatase TiO(2) thin films and submicrometer-wide waveguides with promising optical properties for microphotonic devices. We deposit both amorphous and polycrystalline anatase TiO(2) using reactive sputtering and define waveguides using electron-beam lithography and reactive ion etching. For the amorphous TiO(2), we obtain propagation losses of 0.12 ± 0.02 dB/mm at 633 nm and 0.04 ± 0.01 dB/mm at 1550 nm in thin films and 2.6 ± 0.5 dB/mm at 633 nm and 0.4 ± 0.2 dB/mm at 1550 nm in waveguides. Using single-mode amorphous TiO(2) waveguides, we characterize microphotonic features including microbends and optical couplers. We show transmission of 780-nm light through microbends having radii down to 2 μm and variable signal splitting in microphotonic couplers with coupling lengths of 10 μm.


Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena | 2011

Design and focused ion beam fabrication of single crystal diamond nanobeam cavities

Thomas M. Babinec; Jennifer T. Choy; Kirsten Smith; Mughees Khan; Marko Loncar

We present the design and fabrication of nanobeam photonic crystal cavities in single crystal diamond for applications in cavity quantum electrodynamics. First, we describe three-dimensional finite-difference time-domain simulations of a high quality factor (Q∼106) and small mode volume [V∼0.5(λ/n)3] cavity whose resonance corresponds to the zero-phonon transition (637 nm) of the nitrogen-vacancy color center in diamond. This high Q/V structure, which would allow for strong light-matter interaction, is achieved by gradually tapering the size of the photonic crystal holes between the defect center and the mirror regions of the nanobeam. Next, we demonstrate two different focused ion beam (FIB) fabrication strategies to generate thin diamond membranes and nanobeam photonic crystal resonators from a bulk crystal. These approaches include a diamond crystal “side-milling” procedure as well as an application of the “lift-out” technique used in transmission electron microscopy sample preparation. Finally, we dis...


Optics Letters | 2012

Integrated TiO2 resonators for visible photonics.

Jennifer T. Choy; Jonathan D. B. Bradley; Parag B. Deotare; Ian B. Burgess; Christopher C. Evans; Eric Mazur; Marko Loncar

We demonstrate waveguide-coupled titanium dioxide (TiO(2) racetrack resonators with loaded quality factors of 2.2×10(4) for the visible wavelengths. The structures were fabricated in sputtered TiO(2) thin films on oxidized silicon substrates using standard top-down nanofabrication techniques, and passively probed in transmission measurements using a tunable red laser.


Applied Physics Letters | 2013

Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings

Jennifer T. Choy; Irfan Bulu; Birgit Hausmann; Erika Janitz; I-Chun Huang; Marko Loncar

We demonstrate an approach, based on plasmonic apertures and gratings, to enhance the radiative decay rate of single nitrogen-vacancy (NV) centers in diamond while simultaneously improving their collection efficiency. Our structures are based on metallic resonators formed by surrounding sub-wavelength diamond nanoposts with a silver film, which can enhance the spontaneous emission rate of an embedded NV center. However, the collection efficiency of emitted photons remains low due to losses to surface plasmons and reflections at the diamond-air interface. In this work, we mitigate photon losses into these channels by incorporating grating structures into the plasmonic cavity system.


Optics Express | 2011

Plasmonic resonators for enhanced diamond NV-center single photon sources.

Irfan Bulu; Thomas M. Babinec; Birgit Hausmann; Jennifer T. Choy; Marko Loncar

We propose a novel source of non-classical light consisting of plasmonic aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV) color center. Theoretical calculations of optimal structures show that these devices can simultaneously enhance optical pumping by a factor of 7, spontaneous emission rates by Fp~50 (Purcell factor), and offer collection efficiencies up to 40%. These excitation and collection enhancements occur over a broad range of wavelengths (~30 nm), and are independently tunable with device geometry, across the excitation (~530 nm) and emission (~600-800 nm) spectrum of the NV center. Implementing this system with top-down techniques in bulk diamond crystals will provide a scalable architecture for a myriad of diamond NV center applications.


Physical review applied | 2016

Enhanced Strain Coupling of Nitrogen-Vacancy Spins to Nanoscale Diamond Cantilevers

Srujan Meesala; Young-Ik Sohn; Haig A. Atikian; Samuel Kim; Michael J. Burek; Jennifer T. Choy; Marko Loncar

Nitrogen vacancy (NV) centers can couple to confined phonons in diamond mechanical resonators via the effect of lattice strain on their energy levels. Access to the strong spin-phonon coupling regime with this system requires resonators with nanoscale dimensions in order to overcome the weak strain response of the NV ground state spin sublevels. In this work, we study NVs in diamond cantilevers with lateral dimensions of a few hundred nm. Coupling of the NV ground state spin to the mechanical mode is detected in electron spin resonance (ESR), and its temporal dynamics are measured via spin echo. Our small mechanical mode volume leads to a 10-100X enhancement in spin-phonon coupling strength over previous NV-strain coupling demonstrations. This is an important step towards strong spin-phonon coupling, which can enable phonon-mediated quantum information processing and quantum metrology.


Applied Physics Letters | 2014

Superconducting nanowire single photon detector on diamond

Haig A. Atikian; Amin Eftekharian; A. Jafari Salim; Michael J. Burek; Jennifer T. Choy; A. Hamed Majedi; Marko Loncar

Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.


Optics Letters | 2011

Photonic crystal disk lasers

Yinan Zhang; Christoph Hamsen; Jennifer T. Choy; Yong Huang; Jae-Hyun Ryou; Russell D. Dupuis; Marko Loncar

A novel type of nanolasers, which combines the advantages of photonic crystal lasers and microdisk lasers, has been demonstrated based on InAlGaAs/InGaAs quantum wells using pulsed optical pumping at room temperature. It incorporates the properties of small footprint, small mode volume, and submilliwatt threshold, and favors vertical emission. We believe that this type of laser acts as a promising candidate for highly-integrated on-chip nanolasers in applications for signal processing and index sensing.

Collaboration


Dive into the Jennifer T. Choy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge