Jenny Kaeding
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jenny Kaeding.
Drug Metabolism and Disposition | 2006
Kathy Senekeo-Effenberger; Shujuan Chen; Erin Brace-Sinnokrak; Jessica A. Bonzo; Mei-Fei Yueh; Upendra A. Argikar; Jenny Kaeding; Jocelyn Trottier; Rory P. Remmel; Joseph K. Ritter; Olivier Barbier; Robert H. Tukey
The UDP-glucuronosyltransferase (UGT) 1A genes in humans have been shown to be differentially regulated in a tissue-specific fashion. Transgenic mice carrying the human UGT1 locus (Tg-UGT1) were recently created, demonstrating that expression of the nine UGT1A genes closely resembles the patterns of expression observed in human tissues. In the present study, UGT1A1, UGT1A3, UGT1A4, and UGT1A6 have been identified as targets of the peroxisome proliferator-activated receptor (PPAR) α in human hepatocytes and Tg-UGT1 mice. Oral administration of the PPARα agonist 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (pirinixic acid, WY-14643) to Tg-UGT1 mice led to induction of these proteins in either the liver, gastrointestinal tract, or kidney. The levels of induced UGT1A3 gene transcripts in liver and UGT1A4 protein in small intestine correlated with induced lamotrigine glucuronidation activity in these tissues. With UGT1A3 previously identified as the major human enzyme involved in human C24-glucuronidation of lithocholic acid (LCA), the dramatic induction of liver UGT1A3 RNA in Tg-UGT1 mice was consistent with the formation of LCA-24G in plasma. Furthermore, PPAR-responsive elements (PPREs) were identified flanking the UGT1A1, UGT1A3, and UGT1A6 genes by a combination of site-directed mutagenesis, specific binding to PPARα and retinoic acid X receptor α, and functional response of the concatenated PPREs in HepG2 cells overexpressing PPARα. In conclusion, these results suggest that oral fibrate treatment in humans will induce the UGT1A family of proteins in the gastrointestinal tract and liver, influencing bile acid glucuronidation and first-pass metabolism of other drugs that are taken concurrently with hypolipidemic therapy.
Hepatology | 2006
Jocelyn Trottier; Mélanie Verreault; Susan Grepper; Didier Monté; Julie Bélanger; Jenny Kaeding; Patrick Caron; T. Inaba; Olivier Barbier
Chenodeoxycholic acid (CDCA) is a liver‐formed detergent and plays an important role in the control of cholesterol homeostasis. During cholestasis, toxic bile acids (BA) accumulate in hepatocytes causing damage and consequent impairment of their function. Glucuronidation, a conjugation reaction catalyzed by UDP‐glucuronosyltransferase (UGT) enzymes, is considered an important metabolic pathway for hepatic BA. This study identifies the human UGT1A3 enzyme as the major enzyme responsible for the hepatic formation of the acyl CDCA‐24glucuronide (CDCA‐24G). Kinetic analyses revealed that human liver and UGT1A3 catalyze the formation of CDCA‐24G with similar Km values of 10.6 to 18.6 μmol/L, respectively. In addition, electrophoretic mobility shift assays and transient transfection experiments revealed that glucuronidation reduces the ability of CDCA to act as an activator of the nuclear farnesoid X‐receptor (FXR). Finally, we observed that treatment of human hepatocytes with fibrates increases the expression and activity of UGT1A3, whereas CDCA has no effect. In conclusion, UGT1A3 is the main UGT enzyme for the hepatic formation of CDCA‐24G and glucuronidation inhibits the ability of CDCA to act as an FXR activator. In vitro data also suggest that fibrates may favor the formation of bile acid glucuronides in cholestatic patients. (HEPATOLOGY 2006;44:1158–1170.)
Hepatology | 2006
Mélanie Verreault; Kathy Senekeo-Effenberger; Jocelyn Trottier; Jessica A. Bonzo; Julie Bélanger; Jenny Kaeding; Bart Staels; Patrick Caron; Robert H. Tukey; Olivier Barbier
Glucuronidation, an important bile acid detoxification pathway, is catalyzed by enzymes belonging to the UDP‐glucuronosyltransferase (UGT) family. Among UGT enzymes, UGT1A3 is considered the major human enzyme for the hepatic C24‐glucuronidation of the primary chenodeoxycholic (CDCA) and secondary lithocholic (LCA) bile acids. We identify UGT1A3 as a positively regulated target gene of the oxysterol‐activated nuclear receptor liver X‐receptor alpha (LXRα). In human hepatic cells and human UGT1A transgenic mice, LXRα activators induce UGT1A3 mRNA levels and the formation of CDCA‐24glucuronide (24G) and LCA‐24G. Furthermore, a functional LXR response element (LXRE) was identified in the UGT1A3 promoter by site‐directed mutagenesis, electrophoretic mobility shift assays and chromatin immunoprecipitation experiment. In addition, LXRα is found to interact with the SRC‐1α and NCoR cofactors to regulate the UGT1A3 gene, but not with PGC‐1β. In conclusion, these observations establish LXRα as a crucial regulator of bile acid glucuronidation in humans and suggest that accumulation of oxysterols in hepatocytes during cholestasis favors bile acid detoxification as glucuronide conjugates. LXR agonists may be useful for stimulating both bile acid detoxification and cholesterol removal in cholestatic or hypercholesterolemic patients, respectively. (HEPATOLOGY 2006;44:368–378.)
Molecular and Cellular Biochemistry | 2009
Olivier Barbier; Jocelyn Trottier; Jenny Kaeding; Patrick Caron; Mélanie Verreault
Bile acids subserve important physiological functions in the control of cholesterol homeostasis. Indeed, hepatic bile acid synthesis and biliary excretion constitute the main route for cholesterol removal from the human body. On the other hand, bile acids serve as natural detergents for the intestinal absorption of dietary cholesterol. However, due to their detergent properties, bile acids are inherently cytotoxic, and their cellular level may be tightly controlled to avoid pathological situations such as cholestasis. Recent investigations have illustrated the crucial roles that a series of ligand-activated transcription factors has in the control of hepatic bile acids synthesis, transport and metabolism. Thus, the lipid-activated nuclear receptors, farnesoid X-receptor (FXR), liver X-receptor (LXR), pregnane X-receptor (PXR) and peroxisome proliferator-activated receptor alpha (PPARα), modulate the expression and activity of genes controlling bile acid homeostasis in the liver. Several members of the UDP-glucuronosyltransferase (UGT) enzymes family are among the bile acid metabolizing enzymes regulated by these receptors. UGTs catalyze glucuronidation, a major phase II metabolic reaction, which converts hydrophobic bile acids into polar and urinary excretable metabolites. This article summarizes our recent observations on the regulation of bile acid conjugating UGTs upon pharmacological activation of lipid-activated receptors, with a particular interest for the role of PPARα and LXRα in controlling human UGT1A3 expression.
Biochemical Journal | 2008
Jenny Kaeding; Emmanuel Bouchaert; Julie Bélanger; Patrick Caron; Sarah Chouinard; Mélanie Verreault; Olivier Larouche; Georges Pelletier; Bart Staels; Alain Bélanger; Olivier Barbier
Androgens are major regulators of prostate cell growth and physiology. In the human prostate, androgens are inactivated in the form of hydrophilic glucuronide conjugates. These metabolites are formed by the two human UGT2B15 [UGT (UDP-glucuronosyltransferase) 2B15] and UGT2B17 enzymes. The FXR (farnesoid X receptor) is a bile acid sensor controlling hepatic and/or intestinal cholesterol, lipid and glucose metabolism. In the present study, we report the expression of FXR in normal and cancer prostate epithelial cells, and we demonstrate that its activation by chenodeoxycholic acid or GW4064 negatively interferes with the levels of UGT2B15 and UGT2B17 mRNA and protein in prostate cancer LNCaP cells. FXR activation also causes a drastic reduction of androgen glucuronidation in these cells. These results point out activators of FXR as negative regulators of androgen-conjugating UGT expression in the prostate. Finally, the androgen metabolite androsterone, which is also an activator of FXR, dose-dependently reduces the glucuronidation of androgens catalysed by UGT2B15 and UGT2B17 in an FXR-dependent manner in LNCaP cells. In conclusion, the present study identifies for the first time the activators of FXR as important regulators of androgen metabolism in human prostate cancer cells.
Molecular Cancer Therapeutics | 2008
Jenny Kaeding; Julie Bélanger; Patrick Caron; Mélanie Verreault; Alain Bélanger; Olivier Barbier
Calcitriol (1α,25-dihydroxyvitamin D3), the active metabolite of vitamin D, has recently emerged as a promising therapeutic agent in the treatment of prostate cancer, the second most common cause of cancer death in American males. In the present study, we have analyzed the effects of calcitriol treatment on the expression and activity of the UDP-glucuronosyltransferase (UGT) 2B15 and 2B17 in prostate cancer LNCaP and 22Rv1 cells. These two enzymes share a crucial role in the inactivation of androgens in the human prostate. We report that calcitriol treatment results in lower glucuronide conjugation of the active androgen dihydrotestosterone and its reduced metabolites androstane-3α-diol and androsterone in LNCaP cells. The same treatment also drastically decreased the mRNA and protein levels of UGT2B15 and UGT2B17 in LNCaP and 22Rv1 cells. Using casodex, an androgen receptor (AR) antagonist, and AR-specific small interfering RNA probes, we show that calcitriol requires a functional AR to inhibit the expression of the UGT2B17 gene in LNCaP cells. By contrast, transient transfection and site-directed mutagenesis experiments revealed that calcitriol down-regulates UGT2B15 promoter activity through a responsive region between positions -171 and -113 bp. In conclusion, the present study identifies the vitamin D receptor activator calcitriol as a negative regulator of the UGT2B15- and UGT2B17-dependent inactivation of androgens in prostate cancer LNCaP cells. Androgens promote prostate cancer cell proliferation; thus, the reduction of their inactivation could have a limiting effect of the calcitriol antiproliferative properties in prostate cancer cells. [Mol Cancer Ther 2008;7(2):380–90]
Drug Metabolism Reviews | 2010
Mélanie Verreault; Jenny Kaeding; Patrick Caron; Jocelyn Trottier; Laurent Grosse; Elise Houssin; Sophie Pâquet; Martin Perreault; Olivier Barbier
Recent progresses in molecular pharmacology approaches have allowed the identification and characterization of a series of nuclear receptors (NR) which efficiently control the level UDP-glucuronosyltransferase (UGT) genes expression. These regulatory processes ensure optimized UGT expression in response to specific endogenous and/or exogenous stimuli. Interestingly, numerous endogenous activators of these NRs are conjugated by the UGT enzymes they regulate. In such a case, the NR-dependent regulation of UGT genes corresponds to a feedforward/feedback mechanism by which a bioactive molecule controls its own concentrations. In the present review, we will discuss i) how bilirubin reduces its circulating levels by activating AhR in the liver; ii) how bile acids modulate their hepatic glucuronidation via PXR- and FXR-dependent processes in enterohepatic tissues; and iii) how androgens inhibit their cellular metabolism in prostate cancer cells through an AR-dependent mechanism. Subsequently, with further discussion of the same examples (bilirubin and bile acids), we will illustrate how NR-dependent regulation of UGT enzymes may contribute to the beneficial effects of pharmacological activators of nuclear receptors, such as CAR and PPARa.
Ppar Research | 2014
Cyril Bigo; Jenny Kaeding; Diala El Husseini; Iwona Rudkowska; Mélanie Verreault; M.C. Vohl; Olivier Barbier
Hypolipidemic fibrates activate the peroxisome proliferator-activated receptor (PPAR) α to modulate lipid oxidation and metabolism. The present study aimed at evaluating how 3 PPARα agonists, namely, fenofibrate, gemfibrozil, and Wy14,643, affect bilirubin synthesis and metabolism. Human umbilical vein epithelial cells (HUVEC) and coronary artery smooth muscle cells (CASMC) were cultured in the absence or presence of the 3 activators, and mRNA, protein, and/or activity levels of the bilirubin synthesizing heme oxygenase- (HO-) 1 and biliverdin reductase (BVR) enzymes were determined. Human hepatocytes (HH) and HepG2 cells sustained similar treatments, except that the expression of the bilirubin conjugating UDP-glucuronosyltransferase (UGT) 1A1 enzyme and multidrug resistance-associated protein (MRP) 2 transporter was analyzed. In HUVECs, gemfibrozil, fenofibrate, and Wy14,643 upregulated HO-1 mRNA expression without affecting BVR. Wy14,643 and fenofibrate also caused HO-1 protein accumulation, while gemfibrozil and fenofibrate favored the secretion of bilirubin in cell media. Similar positive regulations were also observed with the 3 PPARα ligands in CASMCs where HO-1 mRNA and protein levels were increased. In HH and HepG2 cells, both UGT1A1 and MRP2 transcripts were also accumulating. These observations indicate that PPARα ligands activate bilirubin synthesis in vascular cells and metabolism in liver cells. The clinical implications of these regulatory events are discussed.
Molecular Pharmaceutics | 2006
Jocelyn Trottier; Piotr Milkiewicz; Jenny Kaeding; Mélanie Verreault; Olivier Barbier
Molecular Pharmaceutics | 2006
Patrick Caron; Jocelyn Trottier; Mélanie Verreault; Julie Bélanger; Jenny Kaeding; Olivier Barbier