Jenny L. McGuire
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jenny L. McGuire.
Nature | 2011
Anthony D. Barnosky; Nicholas J. Matzke; Susumu Tomiya; Guinevere O. U. Wogan; Brian Swartz; Tiago B. Quental; Charles R. Marshall; Jenny L. McGuire; Emily L. Lindsey; Kaitlin C. Maguire; Ben Mersey; Elizabeth A. Ferrer
Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.
Nature | 2010
Jessica L. Blois; Jenny L. McGuire; Elizabeth A. Hadly
Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last ‘natural’ global warming event at the Pleistocene–Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native ‘weedy’ species.
Trends in Ecology and Evolution | 2012
Paul G. Harnik; Heike K. Lotze; Sean C. Anderson; Zoe V. Finkel; Seth Finnegan; David R. Lindberg; Lee Hsiang Liow; Rowan Lockwood; Craig R. McClain; Jenny L. McGuire; Aaron O’Dea; John M. Pandolfi; Carl Simpson; Derek P. Tittensor
In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Thus, there is an urgent need to determine which marine species will adapt and which will go extinct. Here, we review the growing literature on marine extinctions and extinction risk in the fossil, historical, and modern records to compare the patterns, drivers, and biological correlates of marine extinctions at different times in the past. Characterized by markedly different environmental states, some past periods share common features with predicted future scenarios. We highlight how the different records can be integrated to better understand and predict the impact of current and projected future environmental changes on extinction risk in the ocean.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Jenny L. McGuire; Joshua J. Lawler; Brad H. McRae; Tristan A. Nuñez; David M. Theobald
Significance Many plants and animals will need to move large distances to track preferred climates, but fragmentation and barriers limit their movements. We asked to what degree and where species will be able to track suitable climates. We demonstrate that only 41% of US natural land area is currently connected enough to allow species to track preferred temperatures as the planet warms over the next 100 years. If corridors allowed movement between all natural areas, species living in 65% of natural area could track their current climates, allowing them to adjust to 2.7 °C more temperature change. The greatest benefits result from connecting low-lying natural areas, especially in the southeastern United States. Facilitating movement will be crucial for preventing biodiversity losses. The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species’ ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.
Science | 2015
Seth Finnegan; Sean C. Anderson; Paul G. Harnik; Carl Simpson; Derek P. Tittensor; Jarrett E. K. Byrnes; Zoe V. Finkel; David R. Lindberg; Lee Hsiang Liow; Rowan Lockwood; Heike K. Lotze; Craig R. McClain; Jenny L. McGuire; Aaron O'Dea; John M. Pandolfi
Recognizing the threat of additive risk Humans are accelerating the extinction rates of species in both terrestrial and marine environments. However, species extinctions have occurred across time for a variety of other reasons. Finnegan et al. looked at the extinction rates across marine genera (groups of species) over the past 23 million years to determine intrinsic extinction rates and what traits or regions correspond to the highest rates. Combining patterns of intrinsic extinction with regions of high anthropogenic threat revealed taxa and areas, particularly in the tropics, where the risk of extinction will be especially high. Science, this issue p. 567 Fossils reveal patterns of extinction in marine species, past and present. Marine taxa are threatened by anthropogenic impacts, but knowledge of their extinction vulnerabilities is limited. The fossil record provides rich information on past extinctions that can help predict biotic responses. We show that over 23 million years, taxonomic membership and geographic range size consistently explain a large proportion of extinction risk variation in six major taxonomic groups. We assess intrinsic risk—extinction risk predicted by paleontologically calibrated models—for modern genera in these groups. Mapping the geographic distribution of these genera identifies coastal biogeographic provinces where fauna with high intrinsic risk are strongly affected by human activity or climate change. Such regions are disproportionately in the tropics, raising the possibility that these ecosystems may be particularly vulnerable to future extinctions. Intrinsic risk provides a prehuman baseline for considering current threats to marine biodiversity.
Trends in Ecology and Evolution | 2017
Catherine Badgley; Tara M. Smiley; Rebecca C. Terry; Edward Byrd Davis; Larisa R. G. DeSantis; David L. Fox; Samantha S. B. Hopkins; Tereza Jezkova; Marjorie D. Matocq; Nicholas J. Matzke; Jenny L. McGuire; Andreas Mulch; Brett R. Riddle; V. Louise Roth; Joshua X. Samuels; Caroline A.E. Strömberg; Brian J. Yanites
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research.
Journal of Mammalogy | 2011
Jenny L. McGuire
Abstract Paleontology can provide a deep-time dimension to observations about recent reactions of small mammals to climate change. Obtaining this perspective for voles (Microtus), a common and important constituent of North American mammal communities, has been difficult because species identification based on their dental remains is problematic. Here I demonstrate that geometric morphometrics and discriminant analyses can use commonly fossilized dental features to identify the 5 extant species of Microtus in California: M. californicus (California vole), M. longicaudus (long-tailed vole), M. montanus (montane vole), M. oregoni (Oregon vole), and M. townsendii (Townsends vole). Analyses of landmarks on the lower 1st molar (m1) provide more accurate identification than those of the 3rd upper molar (M3), and it is important to use jackknife misidentification metrics to assess the precision of discriminant analyses. Addition of semilandmark curves on m1 does not improve accuracy. The utility of these techniques is demonstrated by identifying Microtus specimens from 2 California fossil localities, Pacheco 2 and Prune Avenue, which provides the first evidence for extralimital presence of M. longicaudus at both localities. The presence of M. longicaudus at these low-elevation sites indicates that pronounced geographic range shifts in this species that have been observed in California over the last 100 years also occurred during previous climate changes. Eventually it might be possible to ascertain whether current range shifts are exceeding those that typified responses to past climate changes.
Conservation Biology | 2015
Jacquelyn L. Gill; Jessica L. Blois; Blas M. Benito; Solomon Z. Dobrowski; Malcolm L. Hunter; Jenny L. McGuire
Climate change will require novel conservation strategies. One such tactic is a coarse-filter approach that focuses on conserving natures stage (CNS) rather than the actors (individual species). However, there is a temporal mismatch between the long-term goals of conservation and the short-term nature of most ecological studies, which leaves many assumptions untested. Paleoecology provides a valuable perspective on coarse-filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near-time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general. Species experienced a range of individualistic responses to these changes, including community turnover and novel associations, extinction and speciation, range shifts, changes in local richness and evenness, and both equilibrium and disequilibrium responses. Due to the dynamic nature of species responses to Quaternary climate change, a coarse-filter strategy may be appropriate for many taxa because it can accommodate dynamic processes. However, conservationists should also consider that the persistence of landforms varies across space and time, which could have potential long-term consequences for geodiversity and thus biodiversity.
Journal of Biogeography | 2013
Jenny L. McGuire; Edward Byrd Davis
Ecography | 2014
Edward Byrd Davis; Jenny L. McGuire; John D. Orcutt