Jenny Mattisson
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jenny Mattisson.
Ecological Applications | 2013
Vincenzo Gervasi; Håkan Sand; Barbara Zimmermann; Jenny Mattisson; Petter Wabakken; John D. C. Linnell
Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.
Journal of Wildlife Management | 2010
Jenny Mattisson; Henrik Andrén; Jens Persson; Peter Segerström
Abstract Use of Global Positioning System (GPS) telemetry is increasing in wildlife studies and has provided researchers and managers with new insight into animal behavior. However, performance of GPS collars varies and a major concern is the cause of unsuccessful fixes. We examined possible factors causing missed fixes in GPS collars on sympatric free-ranging Eurasian lynx (Lynx lynx) and wolverines (Gulo gulo) in northern Sweden. We tested for effects of species, activity, habitat, individual, and collar on fix rate. Species was the most important factor affecting fix rate. Fix rate of GPS collars on lynx (80%) was almost twice as high as on wolverines (46%). Fix rate decreased during periods of low activity (day beds) for both species. Fix rate also decreased for females (both lynx and wolverine) for a period after they gave birth. We found no effect of proportion of forest within individual home range on fix rate. We conclude that species behavior, characteristics, and activity pattern are important factors affecting fix rate that we recommend be taken into consideration prior to analyzing GPS location data.
Canadian Journal of Zoology | 2011
Jenny Mattisson; Jens Persson
Interspecific interactions between sympatric carnivores can be important for the behaviour and demography of involved species. We studied spatial and temporal interactions between an obligate predator, the Eurasian lynx (Lynx lynx (L., 1758)), and a facultative scavenger, the wolverine (Gulo gulo (L., 1758)). Wolverines are known to utilize lynx-killed reindeer (Rangifer tarandus tarandus (L., 1758)) and may benefit from being sympatric with lynx if interference competi- tion is low. We used individual location data from 9 lynx and 17 wolverines to analyse interaction between inter- and in- tra-specific dyads (n = 195). We found no spatial segregation between lynx and wolverines and we observed no attraction or avoidance between individuals of the two species, independent of proportion of home-range overlap. This opposed our prediction that wolverines will show direct or delayed attraction to lynx. Wolverines may still benefit by scavenging lynx- killed reindeer while avoiding direct encounters with the lynx. Within species, we found attraction between males and fe- males, increasing with proportion of overlap for lynx. Attraction was also found between consexual lynx, while consexual wolverines showed little home-range overlap (7%-9%) and neutral temporal interaction, indicating territoriality. Individual space use may be more influenced by conspecific interactions than by other species.
Journal of Mammalogy | 2012
Robert M. Inman; Audrey J. Magoun; Jens Persson; Jenny Mattisson
Abstract Wolverines are demographically vulnerable and susceptible to impacts from climate change. Their distribution is correlated with persistent spring snow cover, but food-based explanations for this relationship have not been explored. We synthesize information on the timing of both wolverine reproductive events and food availability to improve our understanding of the behaviors, habitat features, and foods that influence reproductive success. Wolverine births are constrained to a brief period of the year and occur at an earlier date than other nonhibernating, northern carnivores. Our examination suggests that this timing is adaptive because it allows wolverines to take advantage of a cold, low-productivity niche by appending the scarce resources available during winter to the brief period of summer abundance. The wolverines bet-hedging reproductive strategy appears to require success in 2 stages. First, they must fuel lactation (February–April) with caches amassed over winter or acquisition of a sudden food bonanza (e.g., winter-killed ungulates); otherwise, early litter loss occurs. Next, they must fuel the majority of postweaning growth during the brief but relatively reliable summer period of resource abundance. The 1st stage is likely dependent on scavenged ungulate resources over most of the wolverines range, whereas the 2nd stage varies by region. In some regions the 2nd stage may continue to be focused on scavenging ungulate remains that have been provided by larger predators. In other regions the 2nd stage may be focused on predation by wolverines on small prey or neonatal ungulates. During all seasons and regions, caching in cold, structured microsites to inhibit competition with insects, bacteria, and other scavengers is likely a critical behavioral adaptation because total food resources are relatively limited within the wolverines niche. Habitat features that facilitate caching, e.g., boulders and low ambient temperatures, are likely important and could be related to the limits of distribution. This “refrigeration-zone” hypothesis represents a food-based explanation for the correlation between wolverine distribution and persistent spring snow cover. Understanding regional differences in foods that fuel reproduction and underlying causes to the limits of distribution could be important for maintaining wolverine populations in the future.
Journal of Mammalogy | 2011
Jenny Mattisson; J Ens Persson
Abstract It is important to the conservation and management of threatened or endangered carnivores to recognize interspecific interactions that can influence demography or behavior of the species involved. We studied the Eurasian lynx (Lynx lynx), an efficient predator, and wolverine (Gulo gulo), an opportunistic predator and scavenger, that coexist in the reindeer husbandry area in northern Sweden. Both species are major predators on semidomestic reindeer (Rangifer tarandus), but wolverines frequently scavenge ungulate carcasses. We examined the composition and use of food resources by wolverines and in particular the relative importance of lynx-killed reindeer in wolverine diet. We also examined the influence of wolverine scavenging on lynx kill rate. We found that 52% of carcasses visited by wolverines were lynx-killed reindeer, but only 11% were wolverine-killed reindeer. Of all wolverine locations at carcasses, 28% were on lynx-killed and 24% on wolverine-killed reindeer. Remaining locations were mainly on reindeer that died from accidents (23%) or were killed by unknown carnivores (9%). Lynx predation rate on reindeer was nine times higher than that of wolverines. Wolverines scavenged 68% of available lynx-killed reindeer, 29% of which were still being used by lynx at wolverine arrival. Still, wolverine scavenging had a limited influence on lynx kill rate. Time to next kill decreased only when the lynx kill was an adult reindeer in forest; however, most lynx-killed reindeer were found on tundra. Wolverines appear to benefit from coexistence with lynx through increased scavenging opportunities. We suspect that lynx presence reduces wolverine predation on reindeer due to increased scavenging opportunities. These results may have important implications for carnivore management in reindeer husbandry areas.
PLOS ONE | 2014
Marco Heurich; Anton Hilger; Helmut Küchenhoff; Henrik Andrén; Luděk Bufka; Miha Krofel; Jenny Mattisson; John Odden; Jens Persson; Geir Rune Rauset; Krzysztof Schmidt; John D. C. Linnell
The activity patterns of most terrestrial animals are regarded as being primarily influenced by light, although other factors, such as sexual cycle and climatic conditions, can modify the underlying patterns. However, most activity studies have been limited to a single study area, which in turn limit the variability of light conditions and other factors. Here we considered a range of variables that might potentially influence the activity of a large carnivore, the Eurasian lynx, in a network of studies conducted with identical methodology in different areas spanning latitudes from 49°7′N in central Europe to 70°00′N in northern Scandinavia. The variables considered both light conditions, ranging from a day with a complete day–night cycle to polar night and polar day, as well as individual traits of the animals. We analysed activity data of 38 individual free-ranging lynx equipped with GPS-collars with acceleration sensors, covering more than 11,000 lynx days. Mixed linear additive models revealed that the lynx activity level was not influenced by the daily daylight duration and the activity pattern was bimodal, even during polar night and polar day. The duration of the active phase of the activity cycle varied with the widening and narrowing of the photoperiod. Activity varied significantly with moonlight. Among adults, males were more active than females, and subadult lynx were more active than adults. In polar regions, the amplitude of the lynx daily activity pattern was low, likely as a result of the polycyclic activity pattern of their main prey, reindeer. At lower latitudes, the basic lynx activity pattern peaked during twilight, corresponding to the crepuscular activity pattern of the main prey, roe deer. Our results indicated that the basic activity of lynx is independent of light conditions, but is modified by both individual traits and the activity pattern of the locally most important prey.
Oecologia | 2013
Geir Rune Rauset; Jenny Mattisson; Henrik Andrén; Guillaume Chapron; Jens Persson
Differentiation in habitat selection among sympatric species may depend on niche partitioning, species interactions, selection mechanisms and scales considered. In a mountainous area in Sweden, we explored hierarchical habitat selection in Global Positioning System-collared individuals of two sympatric large carnivore species; an obligate predator, the Eurasian lynx (Lynx lynx), and a generalist predator and scavenger, the wolverine (Gulo gulo). Although the species’ fundamental niches differ widely, their ranges overlap in this area where they share a prey base and main cause of mortality. Both lynx and wolverines selected for steep and rugged terrain in mountainous birch forest and in heaths independent of scale and available habitats. However, the selection of lynx for their preferred habitats was stronger when they were forming home ranges and they selected the same habitats within their home ranges independent of home range composition. Wolverines displayed a greater variability when selecting home ranges and habitat selection also varied with home range composition. Both species selected for habitats that promote survival through limited encounters with humans, but which also are rich in prey, and selection for these habitats was accordingly stronger in winter when human activity was high and prey density was low. We suggest that the observed differences between the species result primarily from different foraging strategies, but may also depend on differences in ranging and resting behaviour, home range size, and relative density of each species. Our results support the prediction that sympatric carnivores with otherwise diverging niches can select for the same resources when sharing main sources of food and mortality.
Wildlife Biology | 2011
Henrik Andrén; Jens Persson; Jenny Mattisson; Anna Danell
Abstract In conservation and management of large predators, effects of species are often considered separately. However, predators often interact with one another in different ways (e.g. interspecific competition, intra guild predation and kleptoparasitism) that may influence the total predation on a common prey. We estimated the total number of semi-domestic reindeer Rangifer tarandus killed by Eurasian lynx Lynx lynx and wolverine Gulo gulo at different relative abundances of the two species using a model based on diet, food requirements of lynx and wolverine and amount of food available on a reindeer. Our model suggests that total predation decreases by approximately 7.9% (± 4.8 SD) if wolverines scavenge on lynx-killed reindeer, compared to a model without scavenging. If the management goal is a constant number of predators, the model suggests that the total kill rate will be lowest in areas with only wolverines, as the estimated wolverine kill rate is much lower than the lynx kill rate. Our model showed that it is unlikely that the lowest number of reindeer killed per predator individual will be at a certain lynx-wolverine ratio, which would appear if lynx consumption of killed reindeer is low and wolverines are very efficient finding lynx-killed reindeer. However, if the management goal is a constant number of lynx and wolverines, the model suggests that the total predation is lower, if lynx and wolverines coexist in the same area compared to existing separately in different areas. The total predation by wolverine and lynx on reindeer is very important for the management of lynx and wolverine in the reindeer husbandry area in Sweden, as the current compensation scheme for predator-killed semi-domestic reindeer is based on the number of predators present within a reindeer herding district, and the compensation for wolverine and lynx is added independently of one another.
Scientific Reports | 2016
José Vicente López-Bao; Jenny Mattisson; Jens Persson; Malin Aronsson; Henrik Andrén
The study of competition and coexistence among similar interacting species has long been considered a cornerstone in evolutionary and community ecology. However, understanding coexistence remains a challenge. Using two similar and sympatric competing large carnivores, Eurasian lynx and wolverines, we tested the hypotheses that tracking among heterospecifics and reactive responses to potential risk decreases the probability of an agonistic encounter when predators access shared food resources, thus facilitating coexistence. Lynx and wolverines actively avoided each other, with the degree of avoidance being greater for simultaneous than time-delayed predator locations. Wolverines reacted to the presence of lynx at relatively short distances (mean: 383 m). In general, lynx stayed longer, and were more stationary, around reindeer carcasses than wolverines. However, when both predators were present at the same time around a carcass, lynx shortened their visits, while wolverine behavior did not change. Our results support the idea that risk avoidance is a reactive, rather than a predictive, process. Since wolverines have adapted to coexist with lynx, exploiting lynx-killed reindeer carcasses while avoiding potential encounters, the combined presence of both predators may reduce wolverine kill rate and thus the total impact of these predators on semi-domestic reindeer in Scandinavia. Consequently, population management directed at lynx may affect wolverine populations and human-wolverine conflicts.
Oecologia | 2013
Jenny Mattisson; Håkan Sand; Petter Wabakken; Vincenzo Gervasi; Olof Liberg; John D. C. Linnell; Geir Rune Rauset; Hans Christian Pedersen