Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny Presto is active.

Publication


Featured researches published by Jenny Presto.


Nature Structural & Molecular Biology | 2015

A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers.

S.A. Cohen; Paolo Arosio; Jenny Presto; Firoz Roshan Kurudenkandy; Henrik Biverstål; Lisa Dolfe; Christopher J.R. Dunning; Xiaoting Yang; Birgitta Frohm; Michele Vendruscolo; Jan Johansson; Christopher M. Dobson; André Fisahn; Tuomas P. J. Knowles; Sara Linse

Alzheimers disease is an increasingly prevalent neurodegenerative disorder whose pathogenesis has been associated with aggregation of the amyloid-β peptide (Aβ42). Recent studies have revealed that once Aβ42 fibrils are generated, their surfaces effectively catalyze the formation of neurotoxic oligomers. Here we show that a molecular chaperone, a human Brichos domain, can specifically inhibit this catalytic cycle and limit human Aβ42 toxicity. We demonstrate in vitro that Brichos achieves this inhibition by binding to the surfaces of fibrils, thereby redirecting the aggregation reaction to a pathway that involves minimal formation of toxic oligomeric intermediates. We verify that this mechanism occurs in living mouse brain tissue by cytotoxicity and electrophysiology experiments. These results reveal that molecular chaperones can help maintain protein homeostasis by selectively suppressing critical microscopic steps within the complex reaction pathways responsible for the toxic effects of protein misfolding and aggregation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation

Jenny Presto; Maria Thuveson; Pernilla Carlsson; Marta Busse; Maria Wilén; Inger Eriksson; Marion Kusche-Gullberg; Lena Kjellén

Heparan sulfate (HS) proteoglycans influence embryonic development and adult physiology through interactions with protein ligands. The interactions depend on HS structure, which is determined largely during biosynthesis by Golgi enzymes. How biosynthesis is regulated is more or less unknown. During polymerization of the HS chain, carried out by a complex of the exostosin proteins EXT1 and EXT2, the first modification enzyme, glucosaminyl N-deacetylase/N-sulfotransferase (NDST), introduces N-sulfate groups into the growing polymer. Unexpectedly, we found that the level of expression of EXT1 and EXT2 affected the amount of NDST1 present in the cell, which, in turn, greatly influenced HS structure. Whereas overexpression of EXT2 in HEK 293 cells enhanced NDST1 expression, increased NDST1 N-glycosylation, and resulted in elevated HS sulfation, overexpression of EXT1 had opposite effects. Accordingly, heart tissue from transgenic mice overexpressing EXT2 showed increased NDST activity. Immunoprecipitaion experiments suggested an interaction between EXT2 and NDST1. We speculate that NDST1 competes with EXT1 for binding to EXT2. Increased NDST activity in fibroblasts with a gene trap mutation in EXT1 supports this notion. These results support a model in which the enzymes of HS biosynthesis form a complex, or a GAGosome.


Journal of Biological Chemistry | 2007

Contribution of EXT1, EXT2 and EXTL3 to heparan sulfate chain elongation

Marta Busse; Almir Feta; Jenny Presto; Maria Wilén; Mona Grønning; Lena Kjellén; Marion Kusche-Gullberg

The exostosin (EXT) family of genes encodes glycosyltransferases involved in heparan sulfate biosynthesis. Five human members of this family have been cloned to date: EXT1, EXT2, EXTL1, EXTL2, and EXTL3. EXT1 and EXT2 are believed to form a Golgi-located hetero-oligomeric complex that catalyzes the chain elongation step in heparan sulfate biosynthesis, whereas the EXTL proteins exhibit overlapping glycosyl-transferase activities in vitro, so that it is not apparent what reactions they catalyze in vivo. We used gene-silencing strategies to investigate the roles of EXT1, EXT2, and EXTL3 in heparan sulfate chain elongation. Small interfering RNAs (siRNAs) directed against the human EXT1, EXT2, or EXTL3 mRNAs were introduced into human embryonic kidney 293 cells. Compared with cells transfected with control siRNA, those transfected with EXT1 or EXT2 siRNA synthesized shorter heparan sulfate chains, and those transfected with EXTL3 siRNA synthesized longer chains. We also generated human cell lines overexpressing the EXT proteins. Overexpression of EXT1 resulted in increased HS chain length, which was even more pronounced in cells coexpressing EXT2, whereas overexpression of EXT2 alone had no detectable effect on heparan sulfate chain elongation. Mutations in either EXT1 or EXT2 are associated with hereditary multiple exostoses, a human disorder characterized by the formation of cartilage-capped bony outgrowths at the epiphyseal growth plates. To further investigate the role of EXT2, we generated human cell lines overexpressing mutant EXT2. One of the mutations, EXT2-Y419X, resulted in a truncated protein. Interestingly, the capacity of wild type EXT2 to enhance HS chain length together with EXT1 was not shared by the EXT2-Y419X mutant.


Journal of Biological Chemistry | 2008

Heparin/Heparan Sulfate Biosynthesis PROCESSIVE FORMATION OF N-SULFATED DOMAINS

Pernilla Carlsson; Jenny Presto; Dorothe Spillmann; Ulf Lindahl; Lena Kjellén

Heparan sulfate (HS) proteoglycans influence embryonic development as well as adult physiology through interactions with various proteins, including growth factors/morphogens and their receptors. The interactions depend on HS structure, which is largely determined during biosynthesis by Golgi enzymes. A key step is the initial generation of N-sulfated domains, primary sites for further polymer modification and ultimately for functional interactions with protein ligands. Such domains, generated through action of a bifunctional GlcNAc N-deacetylase/N-sulfotransferase (NDST) on a [GlcUA-GlcNAc]n substrate, are of variable size due to regulatory mechanisms that remain poorly understood. We have studied the action of recombinant NDSTs on the [GlcUA-GlcNAc]n precursor in the presence and absence of the sulfate donor, 3′-phosphoadenosine 5′-phosphosulfate (PAPS). In the absence of PAPS, NDST catalyzes limited and seemingly random N-deacetylation of GlcNAc residues. By contrast, access to PAPS shifts the NDST toward generation of extended N-sulfated domains that are formed through coupled N-deacetylation/N-sulfation in an apparent processive mode. Variations in N-substitution pattern could be obtained by varying PAPS concentration or by experimentally segregating the N-deacetylation and N-sulfation steps. We speculate that similar mechanisms may apply also to the regulation of HS biosynthesis in the living cell.


Journal of Biological Chemistry | 2012

BRICHOS Domains Efficiently Delay Fibrillation of Amyloid beta-Peptide

Hanna Willander; Jenny Presto; Glareh Askarieh; Henrik Biverstål; Birgitta Frohm; Stefan D. Knight; Jan Johansson; Sara Linse

Background: Alzheimer disease (AD) is associated with Aβ protein misfolding and aggregation into fibrils rich in β-sheet structure. Results: BRICHOS domains prevent fibril formation of Aβ far below the stoichiometric ratio. Conclusion: Aβ is maintained as an unstructured monomer in the presence of BRICHOS. Significance: BRICHOS domain can have a natural protective role against Aβ aggregation, which may open new routes toward AD therapy. Amyloid diseases such as Alzheimer, Parkinson, and prion diseases are associated with a specific form of protein misfolding and aggregation into oligomers and fibrils rich in β-sheet structure. The BRICHOS domain consisting of ∼100 residues is found in membrane proteins associated with degenerative and proliferative disease, including lung fibrosis (surfactant protein C precursor; pro-SP-C) and familial dementia (Bri2). We find that recombinant BRICHOS domains from Bri2 and pro-SP-C prevent fibril formation of amyloid β-peptides (Aβ40 and Aβ42) far below the stoichiometric ratio. Kinetic experiments show that a main effect of BRICHOS is to prolong the lag time in a concentration-dependent, quantitative, and reproducible manner. An ongoing aggregation process is retarded if BRICHOS is added at any time during the lag phase, but it is too late to interfere at the end of the process. Results from circular dichroism and NMR spectroscopy, as well as analytical size exclusion chromatography, imply that Aβ is maintained as an unstructured monomer during the extended lag phase in the presence of BRICHOS. Electron microscopy shows that although the process is delayed, typical amyloid fibrils are eventually formed also when BRICHOS is present. Structural BRICHOS models display a conserved array of tyrosine rings on a five-stranded β-sheet, with inter-hydroxyl distances suited for hydrogen-bonding peptides in an extended β-conformation. Our data imply that the inhibitory mechanism is reliant on BRICHOS interfering with molecular events during the lag phase.


Proceedings of the National Academy of Sciences of the United States of America | 2012

High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C

Hanna Willander; Glareh Askarieh; Michael Landreh; Per Westermark; Kerstin Nordling; Henrik Keränen; Erik Hermansson; Aaron Hamvas; Lawrence M. Nogee; Tomas Bergman; Alejandra Sáenz; Cristina Casals; Johan Åqvist; Hans Jörnvall; H. Berglund; Jenny Presto; Stefan D. Knight; Jan Johansson

BRICHOS domains are encoded in > 30 human genes, which are associated with cancer, neurodegeneration, and interstitial lung disease (ILD). The BRICHOS domain from lung surfactant protein C proprotein (proSP-C) is required for membrane insertion of SP-C and has anti-amyloid activity in vitro. Here, we report the 2.1 Å crystal structure of the human proSP-C BRICHOS domain, which, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry, reveals how BRICHOS domains may mediate chaperone activity. Observation of amyloid deposits composed of mature SP-C in lung tissue samples from ILD patients with mutations in the BRICHOS domain or in its peptide-binding linker region supports the in vivo relevance of the proposed mechanism. The results indicate that ILD mutations interfering with proSP-C BRICHOS activity cause amyloid disease secondary to intramolecular chaperone malfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Heparan sulfate/heparin promotes transthyretin fibrillization through selective binding to a basic motif in the protein.

Fredrik Noborn; Paul O'Callaghan; Erik Hermansson; Xiao Zhang; John B. Ancsin; Ana M. Damas; Ingrid Dacklin; Jenny Presto; Jan Johansson; Maria João Saraiva; Erik Lundgren; Robert Kisilevsky; Per Westermark; Jin-Ping Li

Transthyretin (TTR) is a homotetrameric protein that transports thyroxine and retinol. Tetramer destabilization and misfolding of the released monomers result in TTR aggregation, leading to its deposition as amyloid primarily in the heart and peripheral nervous system. Over 100 mutations of TTR have been linked to familial forms of TTR amyloidosis. Considerable effort has been devoted to the study of TTR aggregation of these mutants, although the majority of TTR-related amyloidosis is represented by sporadic cases due to the aggregation and deposition of the otherwise stable wild-type (WT) protein. Heparan sulfate (HS) has been found as a pertinent component in a number of amyloid deposits, suggesting its participation in amyloidogenesis. This study aimed to investigate possible roles of HS in TTR aggregation. Examination of heart tissue from an elderly cardiomyopathic patient revealed substantial accumulation of HS associated with the TTR amyloid deposits. Studies demonstrated that heparin/HS promoted TTR fibrillization through selective interaction with a basic motif of TTR. The importance of HS for TTR fibrillization was illustrated in a cell model; TTR incubated with WT Chinese hamster ovary cells resulted in fibrillization of the protein, but not with HS-deficient cells (pgsD-677). The effect of heparin on TTR fibril formation was further demonstrated in a Drosophila model that overexpresses TTR. Heparin was colocalized with TTR deposits in the head of the flies reared on heparin-supplemented medium, whereas no heparin was detected in the nontreated flies. Heparin of low molecular weight (Klexane) did not demonstrate this effect.


Nature Communications | 2016

Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation

Paolo Arosio; Thomas C. T. Michaels; Sara Linse; Cecilia Månsson; Cecilia Emanuelsson; Jenny Presto; Jan Johansson; Michele Vendruscolo; Christopher M. Dobson; Tuomas P. J. Knowles

It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation.


FEBS Journal | 2011

BRICHOS domain associated with lung fibrosis, dementia and cancer – a chaperone that prevents amyloid fibril formation?

Hanna Willander; Erik Hermansson; Jan Johansson; Jenny Presto

The BRICHOS domain was initially defined from sequence alignments of the Bri protein associated with familial dementia, chondromodulin associated with chondrosarcoma and surfactant protein C precursor (proSP‐C) associated with respiratory distress syndrome and interstitial lung disease (ILD). Today BRICHOS has been found in 12 protein families. Mutations in the Bri2 and proSP‐C genes result in familial dementia and ILD, respectively, and both these conditions are associated with amyloid formation. Amyloid is of great medical relevance as it is found in several major incurable diseases, like Alzheimer’s and Parkinson’s disease and diabetes mellitus. Work on recombinant BRICHOS domains and transfected cells indicate that BRICHOS is a chaperone domain that, during biosynthesis, binds to precursor protein regions with high β‐sheet propensities, thereby preventing them from amyloid formation. Regions prone to form β‐sheets are present in all BRICHOS‐containing precursor proteins and are probably eventually released by proteolytic cleavage, generating different peptides with largely unknown bioactivities. Recombinant BRICHOS domains from Bri2 and proSP‐C have been found to efficiently prevent SP‐C, the amyloid β‐peptide associated with Alzheimer’s disease, and medin, found in aortic amyloid, from forming amyloid fibrils. The data collected so far on BRICHOS raise several interesting topics for further research: (a) amyloid formation is a potential threat for many more proteins than the ones recognized so far in amyloid diseases; (b) amyloid formation of widely different peptides involves intermediate(s) that are recognized by the BRICHOS domain, suggesting that they have distinct structural similarities; and (c) the BRICHOS domain might be harnessed in therapeutic strategies against amyloid diseases.


Biochemistry | 2013

The BRICHOS domain, amyloid fibril formation, and their relationship.

Stefan D. Knight; Jenny Presto; Sara Linse; Jan Johansson

Amyloid diseases are defined by tissue deposition of insoluble, fibrillar β-sheet polymers of specific proteins, but it appears that toxic oligomeric species rather than the fibrils are the main cause of tissue degeneration. Many proteins can form amyloid-like fibrils in vitro, but only ~30 proteins have been found to cause mammalian amyloid disease, suggesting that physiological mechanisms that protect against amyloid formation exist. The transmembrane region of lung surfactant protein C precursor (proSP-C) forms amyloid-like fibrils in vitro, and SP-C amyloid has been found in lung tissue from patients with interstitial lung disease (ILD). ProSP-C contains a BRICHOS domain, in which many ILD-associated mutations are localized, and the BRICHOS domain can prevent SP-C from forming amyloid-like fibrils. Recent data suggest that recombinant BRICHOS domains from proSP-C and Bri2 (associated with familial dementia and amyloid formation) interact with peptides with a strong propensity to form β-sheet structures, including amyloid β-peptide associated with Alzheimers disease. Such interactions efficiently delay formation of fibrils and oligomers. The BRICHOS domain is defined at the sequence level and is found in ~10 distantly related proprotein families. These have widely different or unknown functions, but several of the proteins are associated with human disease. Structural modeling of various BRICHOS domains, based on the X-ray structure of the proSP-C BRICHOS domain, identifies a conserved region that is structurally complementary to the β-sheet- and/or amyloid-prone regions in the BRICHOS domain-containing proproteins. These observations make the BRICHOS domain the first example of a chaperone-like domain with specificity for β-prone regions.

Collaboration


Dive into the Jenny Presto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna Willander

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Stefan D. Knight

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge