Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter B. Jahrling is active.

Publication


Featured researches published by Peter B. Jahrling.


Nature Medicine | 2005

Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses

Steven M. Jones; Heinz Feldmann; Ute Ströher; Joan B. Geisbert; Lisa Fernando; Allen Grolla; Hans-Dieter Klenk; Nancy J. Sullivan; Viktor E. Volchkov; Elizabeth A. Fritz; Kathleen M. Daddario; Lisa E. Hensley; Peter B. Jahrling; Thomas W. Geisbert

Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein. A single intramuscular injection of the EBOV or MARV vaccine elicited completely protective immune responses in nonhuman primates against lethal EBOV or MARV challenges. Notably, vaccine vector shedding was not detectable in the monkeys and none of the animals developed fever or other symptoms of illness associated with vaccination. The EBOV vaccine induced humoral and apparent cellular immune responses in all vaccinated monkeys, whereas the MARV vaccine induced a stronger humoral than cellular immune response. No evidence of EBOV or MARV replication was detected in any of the protected animals after challenge. Our data suggest that these vaccine candidates are safe and highly efficacious in a relevant animal model.


Nature Medicine | 2004

Exotic emerging viral diseases: progress and challenges

Thomas W. Geisbert; Peter B. Jahrling

The agents causing viral hemorrhagic fever (VHF) are a taxonomically diverse group of viruses that may share commonalities in the process whereby they produce systemic and frequently fatal disease. Significant progress has been made in understanding the biology of the Ebola virus, one of the best known examples. This knowledge has guided our thinking about other VHF agents, including Marburg, Lassa, the South American arenaviruses, yellow fever, Crimean-Congo and Rift Valley fever viruses. Comparisons among VHFs show that a common pathogenic feature is their ability to disable the host immune response by attacking and manipulating the cells that initiate the antiviral response. Of equal importance, these comparisons highlight critical gaps in our knowledge of these pathogens.


Archives of Virology | 2010

Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations

Jens H. Kuhn; Stephan Becker; Hideki Ebihara; Thomas W. Geisbert; Karl M. Johnson; Yoshihiro Kawaoka; W. Ian Lipkin; Ana Negredo; Sergey V. Netesov; Stuart T. Nichol; Gustavo Palacios; Clarence J. Peters; Antonio Tenorio; Viktor E. Volchkov; Peter B. Jahrling

The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d’Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus.


The Lancet | 2003

Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys

Thomas W. Geisbert; Lisa E. Hensley; Peter B. Jahrling; Tom Larsen; Joan B. Geisbert; Jason Paragas; Howard A. Young; Terry M Fredeking; William E. Rote; George P. Vlasuk

BACKGROUND Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate the effects of Ebola haemorrhagic fever. Here, we tested the notion that blockade of fVIIa/tissue factor is beneficial after infection with Ebola virus. METHODS We used a rhesus macaque model of Ebola haemorrhagic fever, which produces near 100% mortality. We administered recombinant nematode anticoagulant protein c2 (rNAPc2), a potent inhibitor of tissue factor-initiated blood coagulation, to the macaques either 10 min (n=6) or 24 h (n=3) after a high-dose lethal injection of Ebola virus. Three animals served as untreated Ebola virus-positive controls. Historical controls were also used in some analyses. FINDINGS Both treatment regimens prolonged survival time, with a 33% survival rate in each treatment group. Survivors are still alive and healthy after 9 months. All but one of the 17 controls died. The mean survival for the six rNAPc2-treated macaques that died was 11.7 days compared with 8.3 days for untreated controls (p=0.0184). rNAPc2 attenuated the coagulation response as evidenced by modulation of various important coagulation factors, including plasma D dimers, which were reduced in nearly all treated animals; less prominent fibrin deposits and intravascular thromboemboli were observed in tissues of some animals that succumbed to Ebola virus. Furthermore, rNAPc2 attenuated the proinflammatory response with lower plasma concentrations of interleukin 6 and monocyte chemoattractant protein-1 (MCP-1) noted in the treated than in the untreated macaques. INTERPRETATION Post-exposure protection with rNAPc2 against Ebola virus in primates provides a new foundation for therapeutic regimens that target the disease process rather than viral replication.


American Journal of Pathology | 2003

Regular ArticlesPathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques: Evidence that Dendritic Cells Are Early and Sustained Targets of Infection

Thomas W. Geisbert; Lisa E. Hensley; Tom Larsen; Howard A. Young; Douglas S. Reed; Joan B. Geisbert; Dana P. Scott; Elliott Kagan; Peter B. Jahrling; Kelly J. Davis

Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions.


Emerging Infectious Diseases | 2007

Panmicrobial Oligonucleotide Array for Diagnosis of Infectious Diseases

Gustavo Palacios; Phuong-Lan Quan; Omar J. Jabado; Sean Conlan; David L. Hirschberg; Yang Liu; Junhui Zhai; Neil Renwick; Jeffrey Hui; Hedi Hegyi; Allen Grolla; James E. Strong; Jonathan S. Towner; Thomas W. Geisbert; Peter B. Jahrling; Cornelia Büchen-Osmond; Heinz Ellerbrok; María Paz Sánchez-Seco; Yves A. Lussier; Pierre Formenty; Stuart T. Nichol; Heinz Feldmann; Thomas Briese; W. Ian Lipkin

To facilitate rapid, unbiased, differential diagnosis of infectious diseases, we designed GreeneChipPm, a panmicrobial microarray comprising 29,455 sixty-mer oligonucleotide probes for vertebrate viruses, bacteria, fungi, and parasites. Methods for nucleic acid preparation, random primed PCR amplification, and labeling were optimized to allow the sensitivity required for application with nucleic acid extracted from clinical materials and cultured isolates. Analysis of nasopharyngeal aspirates, blood, urine, and tissue from persons with various infectious diseases confirmed the presence of viruses and bacteria identified by other methods, and implicated Plasmodium falciparum in an unexplained fatal case of hemorrhagic feverlike disease during the Marburg hemorrhagic fever outbreak in Angola in 2004–2005.


The Journal of Infectious Diseases | 1999

Evaluation of Immune Globulin and Recombinant Interferon-α2b for Treatment of Experimental Ebola Virus Infections

Peter B. Jahrling; T. W. Geisbert; J. B. Geisbert; James R. Swearengen; M. Bray; N. K. Jaax; J. W. Huggins; James W. LeDuc; Clarence J. Peters

A passive immunization strategy for treating Ebola virus infections was evaluated using BALB/ c mice, strain 13 guinea pigs, and cynomolgus monkeys. Guinea pigs were completely protected by injection of hyperimmune equine IgG when treatment was initiated early but not after viremia had developed. In contrast, mice were incompletely protected even when treatment was initiated on day 0, the day of virus inoculation. In monkeys treated with one dose of IgG on day 0, onset of illness and viremia was delayed, but all treated animals died. A second dose of IgG on day 5 had no additional beneficial effect. Pretreatment of monkeys delayed onset of viremia and delayed death several additional days. Interferon-alpha2b (2 x 10(7) IU/kg/day) had a similar effect in monkeys, delaying viremia and death by only several days. Effective treatment of Ebola infections may require a combination of drugs that inhibit viral replication in monocyte/macrophage-like cells while reversing the pathologic effects (e.g., coagulopathy) consequent to this replication.


Laboratory Investigation | 2000

Apoptosis Induced In Vitro and In Vivo During Infection by Ebola and Marburg Viruses

Thomas W. Geisbert; Lisa E. Hensley; Tammy R Gibb; Keith E. Steele; Nancy K. Jaax; Peter B. Jahrling

Induction of apoptosis has been documented during infection with a number of different viruses. In this study, we used transmission electron microscopy (TEM) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling to investigate the effects of Ebola and Marburg viruses on apoptosis of different cell populations during in vitro and in vivo infections. Tissues from 18 filovirus-infected nonhuman primates killed in extremis were evaluated. Apoptotic lymphocytes were seen in all tissues examined. Filoviral replication occurred in cells of the mononuclear phagocyte system and other well-documented cellular targets by TEM and immunohistochemistry, but there was no evidence of replication in lymphocytes. With the exception of intracytoplasmic viral inclusions, filovirus-infected cells were morphologically normal or necrotic, but did not exhibit ultrastructural changes characteristic of apoptosis. In lymph nodes, filoviral antigen was co-localized with apoptotic lymphocytes. Examination of cell populations in lymph nodes showed increased numbers of macrophages and concomitant depletion of CD8+ T cells and plasma cells in filovirus-infected animals. This depletion was particularly striking in animals infected with the Zaire subtype of Ebola virus. In addition, apoptosis was demonstrated in vitro in lymphocytes of filovirus-infected human peripheral blood mononuclear cells by TEM. These findings suggest that lymphopenia and lymphoid depletion associated with filoviral infections result from lymphocyte apoptosis induced by a number of factors that may include release of various chemical mediators from filovirus-infected or activated cells, damage to the fibroblastic reticular cell conduit system, and possibly stimulation by a viral protein.


The Journal of Infectious Diseases | 2006

Postexposure Protection of Guinea Pigs against a Lethal Ebola Virus Challenge Is Conferred by RNA Interference

Thomas W. Geisbert; Lisa E. Hensley; Elliott Kagan; Erik Z. Yu; Joan B. Geisbert; Kathleen M. Daddario-DiCaprio; Elizabeth A. Fritz; Peter B. Jahrling; Kevin McClintock; Janet R. Phelps; Amy C. H. Lee; Adam Judge; Lloyd Jeffs; Ian Maclachlan

Abstract BackgroundEbola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs) MethodsFour siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid–lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge ResultsTreatment of guinea pigs with a pool of the L gene–specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge ConclusionsFurther development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats


Emerging Infectious Diseases | 2002

Evaluation in nonhuman primates of vaccines against Ebola virus.

Thomas W. Geisbert; Peter Pushko; Kevin Anderson; Jonathan M. Smith; Kelly J. Davis; Peter B. Jahrling

Ebola virus (EBOV) causes acute hemorrhagic fever that is fatal in up to 90% of cases in both humans and nonhuman primates. No vaccines or treatments are available for human use. We evaluated the effects in nonhuman primates of vaccine strategies that had protected mice or guinea pigs from lethal EBOV infection. The following immunogens were used: RNA replicon particles derived from an attenuated strain of Venezuelan equine encephalitis virus (VEEV) expressing EBOV glycoprotein and nucleoprotein; recombinant Vaccinia virus expressing EBOV glycoprotein; liposomes containing lipid A and inactivated EBOV; and a concentrated, inactivated whole-virion preparation. None of these strategies successfully protected nonhuman primates from robust challenge with EBOV. The disease observed in primates differed from that in rodents, suggesting that rodent models of EBOV may not predict the efficacy of candidate vaccines in primates and that protection of primates may require different mechanisms.

Collaboration


Dive into the Peter B. Jahrling's collaboration.

Top Co-Authors

Avatar

Lisa E. Hensley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jens H. Kuhn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Reed F. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas W. Geisbert

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Sheli R. Radoshitzky

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Blaney

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew G. Lackemeyer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sina Bavari

United States Department of the Army

View shared research outputs
Top Co-Authors

Avatar

Joan B. Geisbert

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Laura Bollinger

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge