Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Kurth is active.

Publication


Featured researches published by Jens Kurth.


NeuroImage: Clinical | 2015

The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment — Beyond classical regression

Stefan J. Teipel; Jens Kurth; Bernd J. Krause; Michel J. Grothe

Selecting a set of relevant markers to predict conversion from mild cognitive impairment (MCI) to Alzheimers disease (AD) has become a challenging task given the wealth of regional pathologic information that can be extracted from multimodal imaging data. Here, we used regularized regression approaches with an elastic net penalty for best subset selection of multiregional information from AV45-PET, FDG-PET and volumetric MRI data to predict conversion from MCI to AD. The study sample consisted of 127 MCI subjects from ADNI-2 who had a clinical follow-up between 6 and 31 months. Additional analyses assessed the effect of partial volume correction on predictive performance of AV45- and FDG-PET data. Predictor variables were highly collinear within and across imaging modalities. Penalized Cox regression yielded more parsimonious prediction models compared to unpenalized Cox regression. Within single modalities, time to conversion was best predicted by increased AV45-PET signal in posterior medial and lateral cortical regions, decreased FDG-PET signal in medial temporal and temporobasal regions, and reduced gray matter volume in medial, basal, and lateral temporal regions. Logistic regression models reached up to 72% cross-validated accuracy for prediction of conversion status, which was comparable to cross-validated accuracy of non-linear support vector machine classification. Regularized regression outperformed unpenalized stepwise regression when number of parameters approached or exceeded the number of training cases. Partial volume correction had a negative effect on the predictive performance of AV45-PET, but slightly improved the predictive value of FDG-PET data. Penalized regression yielded more parsimonious models than unpenalized stepwise regression for the integration of multiregional and multimodal imaging information. The advantage of penalized regression was particularly strong with a high number of collinear predictors.


European Journal of Nuclear Medicine and Molecular Imaging | 2016

Prospective evaluation of [ 11 C]Choline PET/CT in therapy response assessment of standardized docetaxel first-line chemotherapy in patients with advanced castration refractory prostate cancer

Sarah M. Schwarzenböck; Matthias Eiber; Günther Kundt; M. Retz; Monique Sakretz; Jens Kurth; Uwe Treiber; Roman Nawroth; Ernst J. Rummeny; Jürgen E. Gschwend; Markus Schwaiger; Mark Thalgott; Bernd J. Krause

PurposeThe aim of this study was to prospectively evaluate the value of [11C] Choline PET/CT in monitoring early and late response to a standardized first-line docetaxel chemotherapy in castration refractory prostate cancer (mCRPC) patients.MethodsThirty-two patients were referred for [11C] Choline PET/CT before the start of docetaxel chemotherapy, after one and ten chemotherapy cycles (or - in case of discontinuation - after the last administered cycle) for therapy response assessment. [11C] Choline uptake (SUVmax, SUVmean), CT derived Houndsfield units (HUmax, HUmean), and volume of bone, lung, and nodal metastases and local recurrence were measured semi-automatically at these timepoints. Change in SUVmax, SUVmean, HUmax, HUmean, and volume was assessed between PET 2 and 1 (early response assessment, ERA) and PET 3 and 1 (late response assessment, LRA) on a patient and lesion basis. Results of PET/CT were compared to clinically used RECIST 1.1 and clinical criteria based therapy response assessment including PSA for defining progressive disease (PD) and non-progressive disease (nPD), respectively. Relationships between changes of SUVmax and SUVmean (early and late) and changes of PSAearly and PSAlate were evaluated. Prognostic value of initial SUVmax and SUVmean was assessed. Statistical analyses were performed using SPSS.ResultsIn the patient-based ERA and LRA there were no statistically significant differences in change of choline uptake, HU, and volume between PD and nPD applying RECIST or clinical response criteria. In the lesion-based ERA, decrease in choline uptake of bone metastases was even higher in PD (applying RECIST criteria), whereas in LRA the decrease was higher in nPD (applying clinical criteria). There were only significant correlations between change in choline uptake and PSA in ERA in PD, in LRA no significant correlations were discovered. Initial SUVmax and SUVmean were statistically significantly higher in nPD (applying clinical criteria).ConclusionThere is no significant correlation between change in choline uptake in [11C] Choline PET/CT and clinically routinely used objective response assessment during the early and late course of docetaxel chemotherapy. Therefore, [11C] Choline PET/CT seems to be of limited use in therapy response assessment in standardized first-line chemotherapy in mCRPC patients.


European Journal of Nuclear Medicine and Molecular Imaging | 2013

Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer

Sarah M. Schwarzenböck; Jens Kurth; Ch. Gocke; T. Kuhnt; G. Hildebrandt; Bernd J. Krause

Choline PET/CT has shown limitations for the detection of primary prostate cancer and nodal metastatic disease, mainly due to limited sensitivity and specificity. Conversely in the restaging of prostate cancer recurrence, choline PET/CT is a promising imaging modality for the detection of local regional and nodal recurrence with an impact on therapy management. This review highlights current literature on choline PET/CT for radiation treatment planning in primary and recurrent prostate cancer. Due to limited sensitivity and specificity in differentiating between benign and malignant prostatic tissues in primary prostate cancer, there is little enthusiasm for target volume delineation based on choline PET/CT. Irradiation planning for the treatment of single lymph node metastases on the basis of choline PET/CT is controversial due to its limited lesion-based sensitivity in primary nodal staging. In high-risk prostate cancer, choline PET/CT might diagnose lymph node metastases, which potentially can be included in the conventional irradiation field. Prior to radiation treatment of recurrent prostate cancer, choline PET/CT may prove useful for patient stratification by excluding distant disease which would require systemic therapy. In patients with local recurrence, choline PET/CT can be used to delineate local sites of recurrence within the prostatic resection bed allowing a boost to PET-positive sites. In patients with lymph node metastases outside the prostatic fossa and regional metastatic lymph nodes, choline PET/CT might influence radiation treatment planning by enabling extension of the target volume to lymphatic drainage sites with or without a boost to PET-positive lymph nodes. Further clinical randomized trials are required to assess treatment outcomes following choline-based biological radiation treatment planning in comparison with conventional radiation treatment planning.


PLOS ONE | 2014

CT-based attenuation correction in I-123-ioflupane SPECT.

Catharina Lange; Anita Seese; Sarah M. Schwarzenböck; Karen Steinhoff; Bert Umland-Seidler; Bernd J. Krause; Winfried Brenner; Osama Sabri; Jens Kurth; Swen Hesse; Ralph Buchert

Purpose Attenuation correction (AC) based on low-dose computed tomography (CT) could be more accurate in brain single-photon emission computed tomography (SPECT) than the widely used Chang method, and, therefore, has the potential to improve both semi-quantitative analysis and visual image interpretation. The present study evaluated CT-based AC for dopamine transporter SPECT with I-123-ioflupane. Materials and methods Sixty-two consecutive patients in whom I-123-ioflupane SPECT including low-dose CT had been performed were recruited retrospectively at 3 centres. For each patient, 3 different SPECT images were reconstructed: without AC, with Chang AC and with CT-based AC. Distribution volume ratio (DVR) images were obtained by scaling voxel intensities using the whole brain without striata as reference. For assessing the impact of AC on semi-quantitative analysis, specific-to-background ratios (SBR) in caudate and putamen were obtained by fully automated SPM8-based region of interest (ROI) analysis and tested for their diagnostic power using receiver-operator-characteristic (ROC) analysis. For assessing the impact of AC on visual image reading, screenshots of stereotactically normalized DVR images presented in randomized order were interpreted independently by two raters at each centre. Results CT-based AC resulted in intermediate SBRs about half way between no AC and Chang. Maximum area under the ROC curve was achieved by the putamen SBR, with negligible impact of AC (0.924, 0.935 and 0.938 for no, CT-based and Chang AC). Diagnostic accuracy of visual interpretation also did not depend on AC. Conclusions The impact of CT-based versus Chang AC on the interpretation of I-123-ioflupane SPECT is negligible. Therefore, CT-based AC cannot be recommended for routine use in clinical patient care, not least because of the additional radiation exposure.


Molecules | 2018

[18F]fallypride-PET/CT Analysis of the Dopamine D2/D3 Receptor in the Hemiparkinsonian Rat Brain Following Intrastriatal Botulinum Neurotoxin A Injection

Teresa Mann; Jens Kurth; Alexander Hawlitschka; Jan Stenzel; Tobias Lindner; Stefan Polei; Alexander Hohn; Bernd J. Krause; Andreas Wree

Intrastriatal injection of botulinum neurotoxin A (BoNT-A) results in improved motor behavior of hemiparkinsonian (hemi-PD) rats, an animal model for Parkinson’s disease. The caudate–putamen (CPu), as the main input nucleus of the basal ganglia loop, is fundamentally involved in motor function and directly interacts with the dopaminergic system. To determine receptor-mediated explanations for the BoNT-A effect, we analyzed the dopamine D2/D3 receptor (D2/D3R) in the CPu of 6-hydroxydopamine (6-OHDA)-induced hemi-PD rats by [18F]fallypride-PET/CT scans one, three, and six months post-BoNT-A or -sham-BoNT-A injection. Male Wistar rats were assigned to three different groups: controls, sham-injected hemi-PD rats, and BoNT-A-injected hemi-PD rats. Disease-specific motor impairment was verified by apomorphine and amphetamine rotation testing. Animal-specific magnetic resonance imaging was performed for co-registration and anatomical reference. PET quantification was achieved using PMOD software with the simplified reference tissue model 2. Hemi-PD rats exhibited a constant increase of 23% in D2/D3R availability in the CPu, which was almost normalized by intrastriatal application of BoNT-A. Importantly, the BoNT-A effect on striatal D2/D3R significantly correlated with behavioral results in the apomorphine rotation test. Our results suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing interhemispheric changes of striatal D2/D3R.


Oncotarget | 2016

[ 11 C]Choline PET/CT in therapy response assessment of a neoadjuvant therapy in locally advanced and high risk prostate cancer before radical prostatectomy

Sarah M. Schwarzenböck; Anna Knieling; Michael Souvatzoglou; Jens Kurth; Katja Steiger; Matthias Eiber; Irene Esposito; M. Retz; Hubert Kübler; Jürgen E. Gschwend; Markus Schwaiger; Bernd J. Krause; Mark Thalgott

Purpose Recent studies have shown promising results of neoadjuvant therapy in prostate cancer (PC). The aim of this study was to evaluate the potential of [11C]Choline PET/CT in therapy response monitoring after combined neoadjuvant docetaxel chemotherapy and complete androgen blockade in locally advanced and high risk PC patients. Results In [11C]Choline PET/CT there was a significant decrease of SUVmax and SUVmean (p = 0.004, each), prostate volume (p = 0.005) and PSA value (p = 0.003) after combined neoadjuvant therapy. MRI showed a significant prostate and tumor volume reduction (p = 0.003 and 0.005, respectively). Number of apoptotic cells was significantly higher in prostatectomy specimens of the therapy group compared to pretherapeutic biopsies and the control group (p = 0.02 and 0.003, respectively). Methods 11 patients received two [11C]Choline PET/CT and MRI scans before and after combined neoadjuvant therapy followed by radical prostatectomy and pelvic lymph node dissection. [11C]Choline uptake, prostate and tumor volume, PSA value (before/after neoadjuvant therapy) and apoptosis (of pretherapeutic biopsy/posttherapeutic prostatectomy specimens of the therapy group and prostatectomy specimens of a matched control group without neoadjuvant therapy) were assessed and tested for differences and correlation using SPSS. Conclusions The results showing a decrease in choline uptake after combined neoadjuvant therapy (paralleled by regressive and apoptotic changes in histopathology) confirm the potential of [11C]Choline PET/CT to monitor effects of neoadjuvant therapy in locally advanced and high risk PC patients. Further studies are recommended to evaluate its use during the course of neoadjuvant therapy for early response assessment.


Molecular Imaging and Biology | 2015

Comparison of [11C]Choline ([11C]CHO) and S(+)-β-Methyl-[11C]Choline ([11C]SMC) as Imaging Probes for Prostate Cancer in a PC-3 Prostate Cancer Xenograft Model

Sarah M. Schwarzenböck; Jana Gertz; Michael Souvatzoglou; Jens Kurth; David Sachs; Roman Nawroth; Uwe Treiber; Tibor Schuster; Reingard Senekowitsch-Schmidtke; Markus Schwaiger; Sibylle Ziegler; Gjermund Henriksen; Hans-Jürgen Wester; Bernd J. Krause

PurposeCarbon-11- and fluorine-18-labeled choline derivatives have been introduced as promising tracers for prostate cancer imaging. However, due to limited specificity and sensitivity, there is a need for new tracers with higher sensitivity and specificity for diagnosing prostate cancer to improve tracer uptake and enhance imaging contrast. The aim of this study was to compare the properties of [11C]choline ([11C]CHO) with S(+)-β-methyl-[11C]choline ([11C]SMC) as tracer for prostate cancer imaging in a human prostate tumor mouse xenograft model by small-animal positron emission tomography/X-ray computed tomography (PET/CT).ProceduresWe carried out a dual-tracer small-animal PET/CT study comparing [11C]CHO and [11C]SMC. The androgen-independent human prostate tumor cell line PC3 was implanted subcutaneously in the flanks of Naval Medical Research Institute (NMRI) (nu/nu) mice (n = 11). Mice—6 weeks post-xenograft implantation—were injected with 37 MBq [11C]CHO via the tail vein. On a separate day, the mice were injected with 37 MBq [11C]SMC. Dynamic imaging was performed for 60 min with the Inveon animal PET/CT scanner (Siemens Medical Solutions) on two separate days (randomizing the sequence of the tracers). The dynamic PET images were acquired in list mode. Regions of interest (5 × 5 × 5 mm) were placed in transaxial slices in tumor, muscle (thigh), liver, kidney, and blood. Image analysis was performed calculating tumor to muscle (T/M) ratios based on summed images as well as dynamic data.ResultsFor [11C]SMC, the mean T/M ratio was 2.24 ± 0.56 while the corresponding mean [11C]CHO T/M ratio was 1.35 ± 0.28. The T/M ratio for [11C]SMC was significant higher compared to [11C]CHO (p < 0.001). The time course of T/M ratio (T/Mdyn ratio) of [11C]SMC was higher compared to [11C]CHO with a statistically significant difference between the magnitudes of the T/M ratios and a significant different change of the T/M ratios over time between [11C]CHO and [11C]SMC.ConclusionOur results demonstrate that [11C]SMC is taken up by the tumor in the PC-3 prostate cancer xenograft model. [11C]SMC uptake was significantly higher compared to the clinically utilized [11C]CHO tracer with a higher contrast allowing imaging of a prostate cancer xenograft.


Oncotarget | 2017

[ 68 Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model – comparison with [ 18 F]FDG PET/CT, MRI and ex vivo receptor expression

Sarah M. Schwarzenböck; Jan Stenzel; Thomas Otto; Heike V. Helldorff; Carina Bergner; Jens Kurth; Stefan Polei; Tobias Lindner; Romina Rauer; Alexander Hohn; Oliver W. Hakenberg; Hans Wester; Brigitte Vollmar; Bernd J. Krause

Purpose The aim was to characterize the properties of [68Ga]Pentixafor as tracer for prostate cancer imaging in a PC-3 prostate cancer xenograft mouse model and to investigate its correlation with [18F]FDG PET/CT, magnetic resonance imaging (MRI) and ex vivo analyses. Methods Static [68Ga]Pentixafor and [18F]FDG PET as well as morphological/ diffusion weighted MRI and 1H MR spectroscopy was performed. Imaging data were correlated with ex vivo biodistribution and CXCR4 expression in PC-3 tumors (immunohistochemistry (IHC), mRNA analysis). Flow cytometry was performed for evaluation of localization of CXCR4 receptors (in vitro PC-3 cell experiments). Results Tumor uptake of [68Ga]Pentixafor was significantly lower compared to [18F]FDG. Ex vivo CXCR4 mRNA expression of tumors was shown by PCR. Only faint tumor CXCR4 expression was shown by IHC (immuno reactive score of 3). Accordingly, flow cytometry of PC-3 cells revealed only a faint signal, cell membrane permeabilisation showed a slight signal increase. There was no significant correlation of [68Ga]Pentixafor tumor uptake and ex vivo receptor expression. Spectroscopy showed typical spectra of prostate cancer. Conclusion PC-3 tumor uptake of [68Ga]Pentixafor was existent but lower compared to [18F]FDG. No significant correlation of ex vivo tumor CXCR4 receptor expression and [68Ga]Pentixafor tumor uptake was shown. CXCR4 receptor expression on the surface of PC-3 cells was existent but rather low possibly explaining the limited [68Ga]Pentixafor tumor uptake; receptor localization in the interior of PC-3 cells is presumable as shown by cell membrane permeabilisation. Further studies are necessary to define the role of [68Ga]Pentixafor in prostate cancer imaging.


Oncotarget | 2017

Application of in vivo imaging techniques to monitor therapeutic efficiency of PLX4720 in an experimental model of microsatellite instable colorectal cancer

Sarah Rohde; Tobias Lindner; Stefan Polei; Jan Stenzel; Luise Borufka; Sophie Achilles; Eric Hartmann; Falko Lange; Claudia Maletzki; Änne Glass; Sarah M. Schwarzenböck; Jens Kurth; Alexander Hohn; Brigitte Vollmar; Bernd J. Krause; Robert Jaster

Objectives Patient-derived tumor cell lines are a powerful tool to analyze the sensitivity of individual tumors to specific therapies in mice. An essential prerequisite for such an approach are reliable quantitative techniques to monitor tumor progression in vivo. Methods We have employed HROC24 cells, grown heterotopically in NMRI Foxn1nu mice, as a model of microsatellite instable colorectal cancer to investigate the therapeutic efficiencies of 5’-fluorouracil (5’-FU) and the mutant BRAF inhibitor PLX4720, a vemurafenib analogue, by three independent methods: external measurement by caliper, magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG). Results Repeated measure ANOVA by a general linear model revealed that time-dependent changes of anatomic tumor volumes measured by MRI differed significantly from those of anatomic volumes assessed by caliper and metabolic volumes determined by PET/CT. Over the investigation period of three weeks, neither 5’-FU, PLX4720 nor a combination of both drugs affected the tumor volumes. Also, there was no drug effect on the apparent diffusion constant (ADC) value as detected by MRI. Interestingly, however, PET/CT imaging showed that PLX4720-containing therapies transiently reduced the standardized uptake value (SUV), indicating a temporary response to treatment. Conclusions 5’-FU and PLX4720 were largely ineffective with respect to HROC24 tumor growth. Tumoral uptake of 18F-FDG, as expressed by the SUV, proved as a sensitive indicator of small therapeutic effects. Metabolic imaging by 18F-FDG PET/CT is a suitable approach to detect effects of tumor-directed therapies early and even in the absence of morphological changes.


European Radiology | 2015

Robust, fully automatic delineation of the head contour by stereotactical normalization for attenuation correction according to Chang in dopamine transporter scintigraphy.

Catharina Lange; Jens Kurth; Anita Seese; Sarah M. Schwarzenböck; Karen Steinhoff; Bert Umland-Seidler; Bernd J. Krause; Winfried Brenner; Osama Sabri; Swen Hesse; Ralph Buchert

AbstractObjectivesChang’s method, the most widely used attenuation correction (AC) in brain single-photon emission computed tomography (SPECT), requires delineation of the outer contour of the head. Manual and automatic threshold-based methods are prone to errors due to variability of tracer uptake in the scalp. The present study proposes a new method for fully automated delineation of the head based on stereotactical normalization. The method was validated for SPECT with I-123-ioflupane.MethodsThe new method was compared to threshold-based delineation in 62 unselected patients who had received I-123-ioflupane SPECT at one of 3 centres. The impact on diagnostic power was tested for semi-quantitative analysis and visual reading of the SPECT images (six independent readers).ResultsThe two delineation methods produced highly consistent semi-quantitative results. This was confirmed by receiver operating characteristic analyses in which the putamen specific-to-background ratio achieved highest area under the curve with negligible effect of the delineation method: 0.935 versus 0.938 for stereotactical normalization and threshold-based delineation, respectively. Visual interpretation of DVR images was also not affected by the delineation method.ConclusionsDelineation of the head contour by stereotactical normalization appears useful for Chang AC in I-123-ioflupane SPECT. It is robust and does not require user interaction.Key Points•Chang attenuation correction in brain SPECT requires delineation of the head contour. •Manual and threshold-based methods are prone to errors. •The study proposes a fully-automated method for delineation based on stereotactical normalization. •The method is shown to work reliably in I-123-ioflupane SPECT. •It might improve the workflow of I-123-ioflupane SPECT in everyday patient care.

Collaboration


Dive into the Jens Kurth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan J. Teipel

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge