Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Lindner is active.

Publication


Featured researches published by Tobias Lindner.


Acta Orthopaedica | 2008

Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter

Daniel Kluess; Carmen Zietz; Tobias Lindner; Wolfram Mittelmeier; Klaus-Peter Schmitz; Rainer Bader

Background and purpose Hip resurfacing arthroplasty is being used more and more frequently. The small ratio in size between the resurfaced femoral head and the relatively thick femoral neck raises the question of whether the range of motion is sufficient, particularly with regard to the high mobility required by younger patients. We analyzed motion in a CAD model. Methods Three-dimensional CAD models of the natural hip were created from CT scans and 8 designs of hip resurfacing prostheses (head diameter between 42 mm and 54 mm combined with a hemispherical cup) were implanted in a virtual sense. We simulated 3 different leg positions and the range of motion was evaluated, considering five different implant positions. Results The range of motion of the hip resurfacing designs analyzed was far below the range of motion of stemmed total hip prostheses. None of the resurfacing prostheses provided flexion movements of 90° without impingement. The average range of motion of hip resurfacing arthroplasty was 31–48° below the range of motion of a stemmed total hip replacement with 32-mm head diameter. Interpretation The range of motion of the hip resurfacing designs examined was substantially less than that of a conventional total hip prosthesis. Since impingement of the femoral neck on the acetabular component increases the risk of neck fractures, of dislocation and of subsequent implant loosening, the design and position of the implant should be considered before using hip resurfacing arthroplasty as a standard treatment for younger patients.


Journal of Electromyography and Kinesiology | 2013

Age-related changes in neuromuscular function of the quadriceps muscle in physically active adults

Anett Mau-Moeller; Martin Behrens; Tobias Lindner; Rainer Bader; Sven Bruhn

Substantial evidence exists for the age-related decline in maximal strength and strength development. Despite the importance of knee extensor strength for physical function and mobility in the elderly, studies focusing on the underlying neuromuscular mechanisms of the quadriceps muscle weakness are limited. The aim of this study was to investigate the contributions of age-related neural and muscular changes in the quadriceps muscle to decreases in isometric maximal voluntary torque (iMVT) and explosive voluntary strength. The interpolated twitch technique and normalized surface electromyography (EMG) signal during iMVT were analyzed to assess changes in neural drive to the muscles of 15 young and 15 elderly volunteers. The maximal rate of torque development as well as rate of torque development, impulse and neuromuscular activation in the early phase of contraction were determined. Spinal excitability was estimated using the H reflex technique. Changes at the muscle level were evaluated by analyzing the contractile properties and lean mass. The age-related decrease in iMVT was accompanied by a decline in voluntary activation and normalized surface EMG amplitude. Mechanical parameters of explosive voluntary strength were reduced while the corresponding muscle activation remained primarily unchanged. The spinal excitability of the vastus medialis was not different while M wave latency was longer. Contractile properties and lean mass were reduced. In conclusion, the age-related decline in iMVT of the quadriceps muscle might be due to a reduced neural drive and changes in skeletal muscle properties. The decrease in explosive voluntary strength seemed to be more affected by muscular than by neural changes.


International Journal of Molecular Sciences | 2014

Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

Carolin Gabler; Carmen Zietz; Rebecca Göhler; Andreas Fritsche; Tobias Lindner; Maximilian Haenle; Birgit Finke; Jürgen Meichsner; Solvig Lenz; Bernhard Frerich; Frank Lüthen; J. Barbara Nebe; Rainer Bader

By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.


International Journal of Molecular Sciences | 2017

One Year Follow-Up Risk Assessment in SKH-1 Mice and Wounds Treated with an Argon Plasma Jet

Anke Schmidt; Thomas von Woedtke; Jan Stenzel; Tobias Lindner; Stefan Polei; Brigitte Vollmar; Sander Bekeschus

Multiple evidence in animal models and in humans suggest a beneficial role of cold physical plasma in wound treatment. Yet, risk assessment studies are important to further foster therapeutic advancement and acceptance of cold plasma in clinics. Accordingly, we investigated the long-term side effects of repetitive plasma treatment over 14 consecutive days in a rodent full-thickness ear wound model. Subsequently, animals were housed for 350 days and sacrificed thereafter. In blood, systemic changes of the pro-inflammatory cytokines interleukin 1β and tumor necrosis factor α were absent. Similarly, tumor marker levels of α-fetoprotein and calcitonin remained unchanged. Using quantitative PCR, the expression levels of several cytokines and tumor markers in liver, lung, and skin were found to be similar in the control and treatment group as well. Likewise, histological and immunohistochemical analysis failed to detect abnormal morphological changes and the presence of tumor markers such as carcinoembryonic antigen, α-fetoprotein, or the neighbor of Punc 11. Absence of neoplastic lesions was confirmed by non-invasive imaging methods such as anatomical magnetic resonance imaging and positron emission tomography-computed tomography. Our results suggest that the beneficial effects of cold plasma in wound healing come without apparent side effects including tumor formation or chronic inflammation.


Investigative Radiology | 2015

Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: a feasibility study in healthy subjects and patients with intraocular masses.

Andreas Graessl; Jan Rieger; Darius Lysiak; Till Huelnhagen; Lukas Winter; Robin M. Heidemann; Tobias Lindner; Stefan Hadlich; Annette Zimpfer; Andreas Pohlmann; Beate Endemann; Paul-Christian Krüger; Sönke Langner; Oliver Stachs; Thoralf Niendorf

ObjectivesThis study is designed to examine the feasibility of diffusion-sensitized multishot split-echo rapid acquisition with relaxation enhancement (RARE) for diffusion-weighted ophthalmic imaging free of geometric distortions at 3.0 and 7.0 T in healthy volunteers and patients with intraocular masses. Materials and MethodsA diffusion-sensitized multishot split-echo RARE (ms-RARE) variant is proposed as an alternative imaging strategy for diffusion-weighted imaging. It is compared with standard single-shot echo planar imaging (EPI) and readout-segmented EPI in terms of geometric distortions in a structure phantom as well as in vivo at 3.0 and 7.0 T. To quantify geometric distortions, center of gravity analysis was carried out. Apparent diffusion coefficient (ADC) mapping in a diffusion phantom was performed to verify the diffusion sensitization within ms-RARE. An in vivo feasibility study in healthy volunteers (n = 10; mean age, 31 ± 7 years; mean body mass index, 22.6 ± 1.7 kg/m2) was conducted at 3.0 and 7.0 T to evaluate clinical feasibility of ms-RARE. As a precursor to a broader clinical study, patients (n = 6; mean age, 55 ± 12 years; mean body mass index, 27.5 ± 4.7 kg/m2) with an uveal melanoma and/or retinal detachment were examined at 3.0 and 7.0 T. In 1 case, the diseased eye was enucleated as part of the therapy and imaged afterward with magnetic resonance microscopy at 9.4 T. Macrophotography and histological investigation was carried out. For qualitative assessment of the image distortion, 3 independent readers reviewed and scored ms-RARE in vivo images for all subjects in a blinded reading session. Statistical significance in the difference of the scores (a) obtained for the pooled ms-RARE data with b = 0 and 300 s/mm2 and (b) for the 3 readers was analyzed using the nonparametric Mann-Whitney test. ResultsThe assessment of geometric integrity in phantom imaging revealed the ability of ms-RARE to produce distortion-free images. Unlike ms-RARE, modest displacements (2.3 ± 1.4 pixels) from the fast low angle shot imaging reference were observed for readout-segmented EPI, which were aggravated for single-shot EPI (8.3 ± 5.7 pixels). These observations were confirmed in the in vivo feasibility study including distortion-free diffusion-weighted ophthalmic images with a 0.5 × 0.5 × 5 mm3 spatial resolution at 3.0 T and as good as 0.2 × 0.2 × 2 mm3 at 7.0 T. The latter represents a factor of 40 enhancement in spatial resolution versus clinical protocols recently reported for diffusion-weighted imaging of the eye at 1.5 T. Mean ADC values within the vitreous body were (2.91 ± 0.14) × 10−3 mm2/s at 3.0 T and (2.93 ± 0.41) × 10−3 mm2/s at 7.0 T. Patient data showed severe retinal detachment in the anatomical images. Whereas the tumor remained undetected in T1-weighted and T2-weighted imaging at 3.0/7.0 T, in vivo ADC mapping using ms-RARE revealed the presence of a uveal melanoma with a significant contrast versus the surrounding subretinal hemorrhage. This observation was confirmed by high-resolution ex vivo magnetic resonance microscopy and histology. Qualitative analysis of image distortion in ms-RARE images obtained for all subjects yielded a mean ± SD image quality score of 1.06 ± 0.25 for b = 0 s/mm2 and of 1.17 ± 0.49 for b = 300 s/mm2. No significant interreader differences were observed for ms-RARE with a diffusion sensitization of b = 0 s/mm2 and 300 s/mm2. ConclusionsThis work demonstrates the capability of diffusion-sensitized ms-RARE to acquire high-contrast, high–spatial resolution, distortion-free images of the eye and the orbit at 3.0 and 7.0 T. Geometric distortions that are observed for EPI-based imaging approaches even at lower field strengths are offset by fast spin-echo–based imaging techniques. The benefits of this improvement can be translated into the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide guidance during diagnostic treatment of ophthalmological diseases.


The Scientific World Journal | 2013

A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats

Maximilian Haenle; Carmen Zietz; Tobias Lindner; K. Arndt; Anika Vetter; Wolfram Mittelmeier; Andreas Podbielski; Rainer Bader

Objective. Implant-associated infections remain serious complications in orthopaedic and trauma surgery. A main scientific focus has thus been drawn to the development of anti-infective implant coatings. Animal models of implant-associated infections are considered helpful in the in vivo testing of new anti-infective implant coatings. The aim of the present study was to evaluate a novel animal model for generation of implant-associated infections in the tibial metaphysis of rats. Materials and Methods. A custom-made conical implant made of Ti6Al4V was inserted bilaterally at the medial proximal tibia of 26 female Sprague-Dawley rats. Staphylococcus aureus in amounts spanning four orders of magnitude and each suspended in 15 μl phosphate buffered saline (PBS) was inoculated into the inner cavity of the implant after the implantation into the defined position. Controls were treated accordingly with PBS alone. Animals were then followed for six weeks until sacrifice. Implant-associated infection was evaluated by microbiological investigation using swabs and determination of viable bacteria in the bone around the implant and the biofilm on the implants after sonification. Results. Irrespective of the initial inoculum, all animals in the various groups harbored viable bacteria in the intraoperative swabs as well as the sonication fluid of the implant and the bone samples. No correlation could be established between initially inoculated CFU and population sizes on implant surfaces at sacrifice. However, a significantly higher viable count was observed from peri-implant bone samples for animals inoculated with 106 CFU. Macroscopic signs of animal infection (pus and abscess formation) were only observed for implants inoculated with at least 105 CFU S. aureus. Discussion/Conclusion. The results demonstrate the feasibility of this novel animal model to induce an implant-associated infection in the metaphysis of rats, even with comparatively low bacterial inocula. The specific design of the implant allows an application of bacteria in reproducible numbers at well-defined contact sites to the animal bone.


The Scientific World Journal | 2012

Bone Mineral Densities and Mechanical Properties of Retrieved Femoral Bone Samples in relation to Bone Mineral Densities Measured in the Respective Patients

Yvonne Haba; Ralf Skripitz; Tobias Lindner; Martin Köckerling; Andreas Fritsche; Wolfram Mittelmeier; Rainer Bader

The bone mineral density (BMD) of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (E s) and ultimate compression strength (σ max) of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA) as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016 ± 166 mg/cm2 to 1376 ± 404 mg/cm2. BMDs of the bone samples measured by DXA and ashing yielded values of 315 ± 199 mg/cm2 and 347 ± 113 mg/cm3, respectively. E s and σ max amounted to 232 ± 151 N/mm2 and 6.4 ± 3.7 N/mm2. Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r = 0.85 and 0.79, resp.). E s correlated significantly with BMD in the patients and bone samples as well as the ashing data (r = 0.79, r = 0.82, and r = 0.8, resp.).


PLOS ONE | 2012

Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

Steffen Dommerich; Hagen Frickmann; Jürgen Ostwald; Tobias Lindner; Andreas Erich Zautner; K. Arndt; Hans Wilhelm Pau; Andreas Podbielski

Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.


Sensors | 2015

Accuracy of a Custom Physical Activity and Knee Angle Measurement Sensor System for Patients with Neuromuscular Disorders and Gait Abnormalities

Frank Feldhege; Anett Mau-Moeller; Tobias Lindner; Albert Hein; Andreas Markschies; Uwe Klaus Zettl; Rainer Bader

Long-term assessment of ambulatory behavior and joint motion are valuable tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and gait abnormalities. Even though there are several tools available to quantify ambulatory behavior in a home environment, reliable measurement of joint motion is still limited to laboratory tests. The aim of this study was to develop and evaluate a novel inertial sensor system for ambulatory behavior and joint motion measurement in the everyday environment. An algorithm for behavior classification, step detection, and knee angle calculation was developed. The validation protocol consisted of simulated daily activities in a laboratory environment. The tests were performed with ten healthy subjects and eleven patients with multiple sclerosis. Activity classification showed comparable performance to commercially available activPAL sensors. Step detection with our sensor system was more accurate. The calculated flexion-extension angle of the knee joint showed a root mean square error of less than 5° compared with results obtained using an electro-mechanical goniometer. This new system combines ambulatory behavior assessment and knee angle measurement for long-term measurement periods in a home environment. The wearable sensor system demonstrated high validity for behavior classification and knee joint angle measurement in a laboratory setting.


The Open Orthopaedics Journal | 2011

The Influence in Airforce Soldiers Through Wearing Certain Types of Army-Issue Footwear on Muscle Activity in the Lower Extremities

Christoph Schulze; Tobias Lindner; Katharina Schulz; Susanne Finze; Guenther Kundt; Wolfram Mittelmeier; Rainer Bader

The objective of the study was to analyse the influence of the shape and material of the military footwear worn by soldiers on muscle activity in the lower extremities, and whether such footwear could explain specific strain complaints and traumatic lesions in the region of the lower extremities. 37 soldiers (one woman, 36 men) aged between 20 and 53 years underwent a dynamic electromyography (EMG) analysis. Wearing – one pair at a time - five different types of shoes, the subjects were asked to walk on a treadmill, where an EMG of the following muscles was taken: M. tibialis anterior, M. gastrocnemius mediales, M. gastrocnemius laterales, M. peroneus longus and M. rectus femoris. When the subjects wore old-fashioned outdoor jogging shoes increased muscle activity was observed in the region of the M. peroneus longus. This can be interpreted as a sign of the upper ankle joint requiring increased support and thus explain the higher susceptibility to sprains experienced in connection with these shoes. When the subjects wore combat boots, increased activity was observed in the region of the Mm. tibialis anterior and rectus femoris. The specific activity differences that were observed in particular muscles may have influence in the occurrence of certain disorders, especially in untrained recruits. This can be linked to various strain-related disorders such as shin splints and patellofemoral pain. The data obtained using EMG can provide information about the likelihood of a clustering of the complaints experienced by soldiers during training or active service.

Collaboration


Dive into the Tobias Lindner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sönke Langner

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Stefan Hadlich

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thoralf Niendorf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge