Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Minnerup is active.

Publication


Featured researches published by Jens Minnerup.


International Journal of Stroke | 2012

Neuroprotection for ischaemic stroke: Translation from the bench to the bedside

Brad A. Sutherland; Jens Minnerup; Joyce S. Balami; Francesco Arba; Alastair M. Buchan; Christoph Kleinschnitz

Neuroprotection seeks to restrict injury to the brain parenchyma following an ischaemic insult by preventing salvageable neurons from dying. The concept of neuroprotection has shown promise in experimental studies, but has failed to translate into clinical success. Many reasons exist for this including the heterogeneity of human stroke and the lack of methodological agreement between preclinical and clinical studies. Even with the proposed Stroke Therapy Academic Industry Roundtable criteria for preclinical development of neuroprotective agents for stroke, we have still seen limited success in the clinic, an example being NXY-059, which fulfilled nearly all the Stroke Therapy Academic Industry Roundtable criteria. There are currently a number of ongoing trials for neuroprotective strategies including hypothermia and albumin, but the outcome of these approaches remains to be seen. Combination therapies with thrombolysis also need to be fully investigated, as restoration of oxygen and glucose will always be the best therapy to protect against cell death from stroke. There are also a number of promising neuroprotectants in preclinical development including haematopoietic growth factors, and inhibitors of the nicotinamide adenine dinucleotide phosphate oxidases, a source of free radical production which is a key step in the pathophysiology of acute ischaemic stroke. For these neuroprotectants to succeed, essential quality standards need to be adhered to; however, these must remain realistic as the evidence that standardization of procedures improves translational success remains absent for stroke.


Neurology | 2010

Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function

Heike Wersching; Thomas Duning; Hubertus Lohmann; S. Mohammadi; Christoph Stehling; M. Fobker; M. Conty; Jens Minnerup; E. B. Ringelstein; Klaus Berger; Michael Deppe; Stefan Knecht

Objective: C-reactive protein is a marker of inflammation and vascular disease. It also seems to be associated with an increased risk of dementia. To better understand potential underlying mechanisms, we assessed microstructural brain integrity and cognitive performance relative to serum levels of high-sensitivity C-reactive protein (hs-CRP). Methods: We cross-sectionally examined 447 community-dwelling and stroke-free individuals from the Systematic Evaluation and Alteration of Risk Factors for Cognitive Health (SEARCH) Health Study (mean age 63 years, 248 female). High-field MRI was performed in 321 of these subjects. Imaging measures included fluid-attenuated inversion recovery sequences for assessment of white matter hyperintensities, automated quantification of brain parenchyma volumes, and diffusion tensor imaging for calculation of global and regional white matter integrity, quantified by fractional anisotropy (FA). Psychometric analyses covered verbal memory, word fluency, and executive functions. Results: Higher levels of hs-CRP were associated with worse performance in executive function after adjustment for age, gender, education, and cardiovascular risk factors in multiple regression analysis (β = −0.095, p = 0.02). Moreover, higher hs-CRP was related to reduced global fractional anisotropy (β = −0.237, p < 0.001), as well as regional FA scores of the frontal lobes (β = −0.246, p < 0.001), the corona radiata (β = −0.222, p < 0.001), and the corpus callosum (β = −0.141, p = 0.016), in particular the genu (β = −0.174, p = 0.004). We did not observe a significant association of hs-CRP with measures of white matter hyperintensities or brain atrophy. Conclusion: These data suggest that low-grade inflammation as assessed by high-sensitivity C-reactive protein is associated with cerebral microstructural disintegration that predominantly affects frontal pathways and corresponding executive function.


International Journal of Molecular Sciences | 2012

Neuroprotection for Stroke: Current Status and Future Perspectives

Jens Minnerup; Brad A. Sutherland; Alastair M. Buchan; Christoph Kleinschnitz

Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.


Stroke | 2008

Meta-Analysis of the Efficacy of Granulocyte-Colony Stimulating Factor in Animal Models of Focal Cerebral Ischemia

Jens Minnerup; Jan Heidrich; Jürgen Wellmann; Andreas Rogalewski; Armin Schneider; Wolf-Rüdiger Schäbitz

Background and Purpose— Recent reports have described the efficacy of the hematopoietic growth factor granulocyte-colony stimulating factor (G-CSF) in animal stroke models. Early clinical multicenter trials evaluating the effect of G-CSF in acute stroke and pilot clinical trials for the subacute phase are ongoing. To guide further development, a meta-analysis was performed to assess the effects of G-CSF on infarct size and sensorimotor deficits. Methods— Using electronic and manual searches of the literature, we identified studies describing the efficacy of G-CSF in animal models of focal cerebral ischemia. Two reviewers independently selected studies and extracted data on study quality, G-CSF doses, time of administration, and outcome measured as infarct volume and/or sensorimotor deficit. Data from all studies were pooled by meta-regression analyses. Results— Thirteen studies including 277 animals for infarct size calculation and 258 animals for assessment of sensorimotor deficit met the criteria for inclusion. Overall efficacy of G-CSF regarding infarct size reduction was 42%. Meta-regression analysis revealed a 0.8% (P<0.0001) decrease in infarct size per 1-&mgr;g/kg increase in G-CSF dose when applied within the first 6 hours and a 2.1% (P<0.0001) decrease when applied later than 6 hours after induction of ischemia with a significant (P=0.0004) greater infarct size reduction after delayed treatment. Sensorimotor deficits categorized into 3 subgroups improved between 24% and 40%. Conclusions— Our findings consolidate G-CSF as a drug that both reduces infarct size and enhances functional recovery. These effects are presumably dose dependent. In contrast to most other neuroprotectants, a beneficial outcome may also be achieved when treatment is delayed.


Stroke | 2009

The Efficacy of Erythropoietin and Its Analogues in Animal Stroke Models. A Meta-Analysis

Jens Minnerup; Jan Heidrich; Andreas Rogalewski; Wolf-Rüdiger Schäbitz; Jürgen Wellmann

Background and Purpose— Erythropoietin (EPO) was explored regarding its suitability as a candidate stroke drug in animal experimental studies. We performed a meta-analysis to obtain an overall impression of the efficacy of EPO in published animal experimental stroke studies and for potential guidance of future clinical studies. Methods— By electronic and manual searches of the literature, we identified studies describing the efficacy of EPO in experimental focal cerebral ischemia. Data on study quality, EPO dose, time of administration, and outcome measured as infarct volume or functional deficit were extracted. Data from all studies were pooled by means of a meta-analysis. Results— Sixteen studies were included in the meta-analysis. When administered after the onset of ischemia, EPO and its analogues reduced infarct size by 32% and improved neurobehavioral deficits significantly. A meta-regression suggests higher doses of EPO to be associated with smaller infarct volumes. When administered earlier than 6 hours EPO was more effective compared to a later treatment initiation. Both hematopoietic and nonhematopoietic EPO analogues showed efficacy in experimental stroke. Conclusion— In conclusion, this analysis further strengthens confidence in the efficacy of EPO and its analogues in stroke therapy. Nonhematopoietic EPO analogues which are known to have less systemic adverse effects compared to EPO are also promising candidate stroke drugs. Further experimental studies are required that evaluate the safety of a combination of EPO with thrombolysis and whether EPO is also effective in animals with comorbidity.


Stroke | 2010

Effects of Granulocyte-Colony Stimulating Factor After Stroke in Aged Rats

Aurel Popa-Wagner; Kai Stöcker; Adrian Tudor Balseanu; Andreas Rogalewski; Kai Diederich; Jens Minnerup; Claudiu Margaritescu; Wolf-Rüdiger Schäbitz

Background and Purpose— In aged humans, stroke is a major cause of disability for which no neuroprotective measures are available. Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of growth factors, promotes brain neurogenesis and improves functional outcome after stroke in young animals. We tested the hypothesis that G-CSF provides a restorative therapeutic benefit in aged animals. Methods— Focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 19- to 20-month-old male Sprague-Dawley rats. One hour after reperfusion, the aged rats were treated daily with 15 &mgr;g/kg G-CSF and for 15 days total. Rats were behaviorally tested and the brains removed for analysis at 28 days poststroke. Results— G-CSF treatment after stroke exerted a robust and sustained beneficial effect on survival rate and running function. Transient improvement after G-CSF treatment could be observed for coordinative motor function on the inclined plane test and for working memory in the radial-arm maze test. At the cellular level, G-CSF treatment increased the number of proliferating cells in the subventricular zone and dentate gyrus and also increased the number of newborn neurons in the subventricular zone ipsilateral to the lesion. Conclusions— These results suggest that G-CSF treatment in aged rats has a survival-enhancing capacity and a beneficial effect on functional outcome, most likely through supportive cellular processes such as neurogenesis.


The Journal of Neuroscience | 2009

The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice.

Kai Diederich; Sevgi Sevimli; Henrike Dörr; Evelin Kösters; Maike Hoppen; Lars Lewejohann; Rainer Klocke; Jens Minnerup; Stefan Knecht; Sigrid Nikol; Norbert Sachser; Armin Schneider; Ali Gorji; Clemens Sommer; Wolf-Riidiger Schäbitz

Granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor that controls proliferation and differentiation of neural stem cells. Although recent studies have begun to explore G-CSF-related mechanisms of action in various disease models, little is known about its function in the healthy brain. In the present study, the effect of G-CSF deficiency on memory formation and motor skills was investigated. The impact of G-CSF deficiency on the structural integrity of the hippocampus was evaluated by analyzing the generation of doublecortin-expressing cells, the amount of bromodeoxyurine-labeled cells, the dendritic complexity in hippocampal neurons, the binding densities of NMDA and GABAA receptors and the induction of long-term potentiation (LTP). G-CSF deficiency caused a disruption in memory formation and in the development of motor skills. These impairments were associated with reduced ligand binding densities of NMDA receptors in hippocampal subfields CA3 and the dentate gyrus. The reduced excitation was potentiated by increased ligand binding densities of GABAA receptors resulting in a relative shift in favor of inhibition and impaired behavioral performance. These alterations were accompanied by impaired induction of LTP in the CA1 region. Moreover, G-CSF deficiency led to decreased dendritic complexity in hippocampal neurons in the dentate gyrus and the CA1 region. G-CSF deficiency also caused a reduction of neuronal precursor cells in the dentate gyrus. These findings confirm G-CSF as an essential neurotrophic factor, and point to a role in the proliferation, differentiation and functional integration of neural cells necessary for the structural and functional integrity of the hippocampal formation.


Neurotherapeutics | 2009

Multifunctional actions of approved and candidate stroke drugs

Jens Minnerup; Wolf-Rüdiger Schäbitz

SummaryIschemic stroke causes brain damage by multiple pathways. Previous stroke trials have demonstrated that drugs targeting one or only a few of these pathways fail to improve clinical outcome after stroke. Drugs with multimodal actions have been suggested to overcome this challenge. In this review, we describe the mechanisms of action of agents approved for secondary prevention of ischemic stroke, such as antiplatelet, antihypertensive, and lipid-lowering drugs. These drugs exhibit considerable properties beyond their classical mechanisms, including neuroprotective and neuroregenerative properties. In addition, candidate stroke drugs currently studied in clinical phase III trials are described. Among these, albumin, hematopoietic growth factors, and citicoline have been identified as promising agents with multiple mechanisms. These drugs offer hope that additional treatment options for the acute phase after a stroke will become available in the near future.


Stroke | 2011

Effects of Neural Progenitor Cells on Sensorimotor Recovery and Endogenous Repair Mechanisms After Photothrombotic Stroke

Jens Minnerup; Jeong Beom Kim; Antje Schmidt; Kai Diederich; Henrike Bauer; Matthias Schilling; Jan-Kolja Strecker; E. Bernd Ringelstein; Clemens Sommer; Hans R. Schöler; Wolf-Rüdiger Schäbitz

Background and Purpose— Intravenous neural progenitor cell (NPC) treatment was shown to improve functional recovery after experimental stroke. The underlying mechanisms, however, are not completely understood so far. Here, we investigated the effects of systemic NPC transplantation on endogenous neurogenesis and dendritic plasticity of host neurons. Methods— Twenty-four hours after photothrombotic ischemia, adult rats received either 5 million NPC or placebo intravenously. Behavioral tests were performed weekly up to 4 weeks after ischemia. Endogenous neurogenesis, dendritic length, and dendritic branching of cortical pyramid cells and microglial activation were quantified. Results— NPC treatment led to a significantly improved sensorimotor function measured by the adhesive removal test. The dendritic length and the amount of branch points were significantly increased after NPC transplantation, whereas endogenous neurogenesis was decreased compared to placebo therapy. Decreased endogenous neurogenesis was associated with an increased number of activated microglial cells. Conclusions— Our findings suggest that an increased dendritic plasticity might be the structural basis of NPC-induced functional recovery. The decreased endogenous neurogenesis after NPC treatment seems to be mediated by microglial activation.


Neurobiology of Aging | 2015

Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer's disease

Gero Lueg; Catharina C. Gross; Hubertus Lohmann; Andreas Johnen; André Kemmling; Michael Deppe; Julia Groger; Jens Minnerup; Heinz Wiendl; Sven G. Meuth; Thomas Duning

In Alzheimers disease, the contribution of inflammation is still controversially discussed. The aim of this study was to identify a particular immune profile in the peripheral blood (PB) and cerebrospinal fluid (CSF) in patients with mild Alzheimers disease (mAD) and mild cognitive impairment (MCI) and its potential functional relevance and association with neurodegeneration. A total of 88 patients with cognitive decline (54 mAD, 19 MCI, and 15 other dementias) were included in this study and compared with a group of younger (mean age, 31.3 years) and older (mean age, 68.9 years) healthy volunteers. Patients underwent detailed neurologic and neuropsychological examination, magnetic resonance imaging including voxel-based morphometry of gray matter, voxel-based diffusion tensor imaging, and white matter lesion volumetry, and PB and CSF analysis including multiparameter flow cytometry. Multiparameter flow cytometry revealed that proportions of activated HLA-DR positive CD4(+) and CD8(+) T-cells were slightly and significantly increased in the PB of MCI and mAD patients, respectively, when compared with healthy elderly controls but not in patients with other dementias. Although only a slight enhancement of the proportion of activated CD4(+) T-cells was observed in the CSF of both MCI and mAD patients, the proportion of activated CD8(+) T-cells was significantly increased in the CSF of mAD patients when compared with healthy elderly individuals. A slight increase in the proportion of activated CD8(+) T-cells was also observed in the intrathecal compartment of MCI patients. Activation of cytotoxic CD8(+) T-cells was considerably related to AD-typical neuropsychological deficits. Voxel-based regression analysis revealed a significant correlation between CD8(+) T-cell activation and microstructural tissue damage within parahippocampal areas as assessed by diffusion tensor imaging. Taken together, peripheral and intrathecal CD8(+) T-cell activation in mAD was significantly different from other dementias, suggesting a specific adaptive immune response. Lymphocyte activation seems to have a clinical impact because levels of activated CD8(+) T-cells were correlated with clinical and structural markers of AD pathology.

Collaboration


Dive into the Jens Minnerup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge