Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai Diederich is active.

Publication


Featured researches published by Kai Diederich.


Stroke | 2008

Brain-Derived Neurotrophic Factor But Not Forced Arm Use Improves Long-Term Outcome After Photothrombotic Stroke and Transiently Upregulates Binding Densities of Excitatory Glutamate Receptors in the Rat Brain

Harald D. Müller; Kiran M. Hanumanthiah; Kai Diederich; Stefan Schwab; Wolf-Riidiger Schäbitz; Clemens Sommer

Background and Purpose— Both application of neurotrophic factors like brain-derived neurotrophic factor (BDNF) and constraint-induced movement therapy like forced arm use have been shown to potentially improve outcome after stroke. The aim of the present study was to check whether postischemic long-term outcome correlates to specific modifications in the abundance of various neurotransmitter receptors. Methods— Adult male Wistar rats were subjected to photothrombotic ischemia and assigned to various treatment groups (n=5 each) with end points at 3 and 6 weeks: (1) ischemic control (saline); (2) BDNF (ischemia, 20 &mgr;g BDNF); (3) forced arm use (ischemia, saline, and ipsilateral plaster cast for 5 or 14 days for the 3- and 6-week groups, respectively); and (4) combined treatment (combi; ischemia, 20 &mgr;g BDNF, forced arm use). Animals received intravenous bolus infusions of saline or BDNF 1 hour 3 and 5 days after ischemia, respectively. A group of sham rats (n=2) served as a control. A battery of behavioral tests was performed before and up to 6 weeks after ischemia. Quantitative in vitro receptor autoradiography was performed on 12-&mgr;m-thick cryostat sections using [3H]MK-801, [3H]AMPA, and [3H]muscimol for labeling of NMDA, AMPA, and GABAA receptors, respectively. Results— Best functional outcome was seen after BDNF treatment, whereas vice versa rats with forced arm use did worse in behavioral performance. Improved behavioral outcome was associated with increased perilesional binding densities of NMDA and AMPA receptors 3 weeks after stroke. Conclusions— Our findings suggest that transient enhanced neurotransmission as reflected by increased ligand binding of NMDA and AMPA receptors may participate in successful postlesional reorganization processes.


Stroke | 2010

Effects of Granulocyte-Colony Stimulating Factor After Stroke in Aged Rats

Aurel Popa-Wagner; Kai Stöcker; Adrian Tudor Balseanu; Andreas Rogalewski; Kai Diederich; Jens Minnerup; Claudiu Margaritescu; Wolf-Rüdiger Schäbitz

Background and Purpose— In aged humans, stroke is a major cause of disability for which no neuroprotective measures are available. Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of growth factors, promotes brain neurogenesis and improves functional outcome after stroke in young animals. We tested the hypothesis that G-CSF provides a restorative therapeutic benefit in aged animals. Methods— Focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 19- to 20-month-old male Sprague-Dawley rats. One hour after reperfusion, the aged rats were treated daily with 15 &mgr;g/kg G-CSF and for 15 days total. Rats were behaviorally tested and the brains removed for analysis at 28 days poststroke. Results— G-CSF treatment after stroke exerted a robust and sustained beneficial effect on survival rate and running function. Transient improvement after G-CSF treatment could be observed for coordinative motor function on the inclined plane test and for working memory in the radial-arm maze test. At the cellular level, G-CSF treatment increased the number of proliferating cells in the subventricular zone and dentate gyrus and also increased the number of newborn neurons in the subventricular zone ipsilateral to the lesion. Conclusions— These results suggest that G-CSF treatment in aged rats has a survival-enhancing capacity and a beneficial effect on functional outcome, most likely through supportive cellular processes such as neurogenesis.


Neuropsychopharmacology | 2006

Tonic Dopaminergic Stimulation Impairs Associative Learning in Healthy Subjects

Caterina Breitenstein; Catharina Korsukewitz; Agnes Flöel; Timo Kretzschmar; Kai Diederich; Stefan Knecht

Endogenous dopamine plays a central role in salience coding during associative learning. Administration of the dopamine precursor levodopa enhances learning in healthy subjects and stroke patients. Because levodopa increases both phasic and tonic dopaminergic neurotransmission, the critical mechanism mediating the enhancement of learning is unresolved. We here probed how selective tonic dopaminergic stimulation affects associative learning. Forty healthy subjects were trained in a novel vocabulary of 45 concrete nouns over the course of 5 consecutive training days in a prospective, randomized, double-blind, placebo-controlled design. Subjects received the tonically stimulating dopamine-receptor agonist pergolide (0.1 mg) vs placebo 120 min before training on each training day. The dopamine agonist significantly impaired novel word learning compared to placebo. This learning decrement persisted up to the last follow-up 4 weeks post-training. Subjects treated with pergolide also showed restricted emotional responses compared to the PLACEBO group. The extent of ‘flattened’ affect with pergolide was related to the degree of learning inhibition. These findings suggest that tonic occupation of dopamine receptors impairs learning by competition with phasic dopamine signals. Thus, phasic signaling seems to be the critical mechanism by which dopamine enhances associative learning in healthy subjects and stroke patients.


The Journal of Neuroscience | 2009

The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice.

Kai Diederich; Sevgi Sevimli; Henrike Dörr; Evelin Kösters; Maike Hoppen; Lars Lewejohann; Rainer Klocke; Jens Minnerup; Stefan Knecht; Sigrid Nikol; Norbert Sachser; Armin Schneider; Ali Gorji; Clemens Sommer; Wolf-Riidiger Schäbitz

Granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor that controls proliferation and differentiation of neural stem cells. Although recent studies have begun to explore G-CSF-related mechanisms of action in various disease models, little is known about its function in the healthy brain. In the present study, the effect of G-CSF deficiency on memory formation and motor skills was investigated. The impact of G-CSF deficiency on the structural integrity of the hippocampus was evaluated by analyzing the generation of doublecortin-expressing cells, the amount of bromodeoxyurine-labeled cells, the dendritic complexity in hippocampal neurons, the binding densities of NMDA and GABAA receptors and the induction of long-term potentiation (LTP). G-CSF deficiency caused a disruption in memory formation and in the development of motor skills. These impairments were associated with reduced ligand binding densities of NMDA receptors in hippocampal subfields CA3 and the dentate gyrus. The reduced excitation was potentiated by increased ligand binding densities of GABAA receptors resulting in a relative shift in favor of inhibition and impaired behavioral performance. These alterations were accompanied by impaired induction of LTP in the CA1 region. Moreover, G-CSF deficiency led to decreased dendritic complexity in hippocampal neurons in the dentate gyrus and the CA1 region. G-CSF deficiency also caused a reduction of neuronal precursor cells in the dentate gyrus. These findings confirm G-CSF as an essential neurotrophic factor, and point to a role in the proliferation, differentiation and functional integration of neural cells necessary for the structural and functional integrity of the hippocampal formation.


Stroke | 2011

Effects of Neural Progenitor Cells on Sensorimotor Recovery and Endogenous Repair Mechanisms After Photothrombotic Stroke

Jens Minnerup; Jeong Beom Kim; Antje Schmidt; Kai Diederich; Henrike Bauer; Matthias Schilling; Jan-Kolja Strecker; E. Bernd Ringelstein; Clemens Sommer; Hans R. Schöler; Wolf-Rüdiger Schäbitz

Background and Purpose— Intravenous neural progenitor cell (NPC) treatment was shown to improve functional recovery after experimental stroke. The underlying mechanisms, however, are not completely understood so far. Here, we investigated the effects of systemic NPC transplantation on endogenous neurogenesis and dendritic plasticity of host neurons. Methods— Twenty-four hours after photothrombotic ischemia, adult rats received either 5 million NPC or placebo intravenously. Behavioral tests were performed weekly up to 4 weeks after ischemia. Endogenous neurogenesis, dendritic length, and dendritic branching of cortical pyramid cells and microglial activation were quantified. Results— NPC treatment led to a significantly improved sensorimotor function measured by the adhesive removal test. The dendritic length and the amount of branch points were significantly increased after NPC transplantation, whereas endogenous neurogenesis was decreased compared to placebo therapy. Decreased endogenous neurogenesis was associated with an increased number of activated microglial cells. Conclusions— Our findings suggest that an increased dendritic plasticity might be the structural basis of NPC-induced functional recovery. The decreased endogenous neurogenesis after NPC treatment seems to be mediated by microglial activation.


Experimental Neurology | 2009

Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke.

Sevgi Sevimli; Kai Diederich; Jan-Kolja Strecker; Matthias Schilling; Rainer Klocke; Sigrid Nikol; Friederike Kirsch; Armin Schneider; Wolf-Rüdiger Schäbitz

Several lines of evidence have demonstrated beneficial effects of the hematopoietic factor G-CSF in experimental stroke. A conclusive demonstration of this effect in G-CSF deficient mice is, however, lacking. We therefore investigated the effect of G-CSF deficiency on infarct volumes, functional recovery, mRNA and protein expression of the matrix metalloproteinase 9 (MMP-9) after stroke. Furthermore we tested the efficacy of G-CSF substitution in G-CSF deficient animals to prevent the potential consequences of G-CSF deficiency. In the present study experimental stroke was induced in female non-treated wildtype (wt), G-CSF deficient mice and G-CSF substituted G-CSF deficient mice followed by assessment of infarct volumes, neurological outcome and sensorimotor function. In addition, immunohistochemistry and real-time PCR of the peri-ischemic area were performed. G-CSF deficient mice showed increased infarct volumes, whereas G-CSF substituted mice had a remarkable reduction in lesion size compared to wt mice. These findings are accompanied by an improvement in neurological and sensorimotor function. G-CSF deficiency resulted in an upregulation of MMP-9 in the direct peri-ischemic tissue. Treatment with G-CSF suppressed the upregulation of MMP-9. Taken together, G-CSF deficiency clearly resulted in enlarged infarct volumes, and worsened neurological outcome. G-CSF substitution abolished these negative effects, led to significant reduced lesion volumes, and improved neurological outcome. G-CSF mediated suppression of MMP-9 further demonstrates that endogenous G-CSF plays a significant role in brain protective mechanisms. We have shown for the first time that endogenous G-CSF is required for brain recovery mechanisms after stroke.


Acta neuropathologica communications | 2014

Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease

Daniel Kaiser; Gesa Weise; Karoline Möller; Johanna Scheibe; Claudia Pösel; Sebastian Baasch; Matthias Gawlitza; Donald Lobsien; Kai Diederich; Jens Minnerup; Alexander Kranz; Johannes Boltze; Daniel-Christoph Wagner

IntroductionCerebral small vessel disease (cSVD) is one of the most prevalent neurological disorders. The progressive remodeling of brain microvessels due to arterial hypertension or other vascular risk factors causes subtle, but constant cognitive decline through to manifest dementia and substantially increases the risk for stroke. Preliminary evidence suggests the contribution of the immune system to disease initiation and progression, but a more detailed understanding is impaired by the unavailability of appropriate animal models. Here, we introduce the spontaneously hypertensive rat (SHR) as a model for early onset cSVD and unveiled substantial immune changes in conjunction with brain abnormalities that resemble clinical findings.ResultsIn contrast to age-matched normotensive Wistar Kyoto (WKY) rats, male SHR exhibited non-spatial memory deficits. Magnetic resonance imaging showed brain atrophy and a reduction of white matter volumes in SHR. Histological analyses confirmed white matter demyelination and unveiled a circumscribed blood brain barrier dysfunction in conjunction with micro- and macrogliosis in deep cortical regions. Flow cytometry and histological analyses further revealed substantial disparities in cerebral CD45high leukocyte counts and distribution patterns between SHR and WKY. SHR showed lower counts of T cells in the choroid plexus and meningeal spaces as well as decreased interleukin-10 levels in the cerebrospinal fluid. On the other hand, both T and NK cells were significantly augmented in the SHR brain microvasculature.ConclusionsOur results indicate that SHR share behavioral and neuropathological characteristics with human cSVD patients and further undergird the relevance of immune responses for the initiation and progression of cSVD.


Stroke | 2012

Citicoline Enhances Neuroregenerative Processes After Experimental Stroke in Rats

Kai Diederich; Katrin Frauenknecht; Jens Minnerup; Barbara K. Schneider; Antje Schmidt; Elena Altach; Verena Eggert; Clemens Sommer; Wolf-Rüdiger Schäbitz

Background and Purpose— The neuroprotective potential of citicoline in acute ischemic stroke has been shown in many experimental studies and, although the exact mechanisms are still unknown, a clinical Phase III trial is currently underway. Our present study was designed to check whether citicoline also enhances neuroregeneration after experimental stroke. Methods— Forty Wistar rats were subjected to photothrombotic stroke and treated either with daily injections of citicoline (100 mg/kg) or vehicle for 10 consecutive days starting 24 hours after ischemia induction. Sensorimotor tests were performed after an adequate training period at Days 1, 10, 21, and 28 after stroke. Then brains were removed and analyzed for infarct size, glial scar formation, neurogenesis, and ligand binding densities of excitatory and inhibitory neurotransmitter receptors. Results— Animals treated with citicoline showed a significantly better neurological outcome at Days 10, 21, and 28 after ischemia, which could not be attributed to differences in infarct volumes or glial scar formation. However, neurogenesis in the dentate gyrus, subventricular zone, and peri-infarct area was significantly increased by citicoline. Furthermore, enhanced neurological outcome after citicoline treatment was associated with a shift toward excitation in the perilesional cortex. Conclusions— Our present data demonstrate that, apart from the well-known neuroprotective effects in acute ischemic stroke, citicoline also possesses a substantial neuroregenerative potential. Thanks to its multimodal effects, easy applicability, and history as a well-tolerated drug, promising possibilities of neurological treatment including chronic stroke open up.


Stroke | 2014

Meta-analysis of the Efficacy of Different Training Strategies in Animal Models of Ischemic Stroke

Antje Schmidt; Jürgen Wellmann; Matthias Schilling; Jan-Kolja Strecker; Clemens Sommer; Wolf-Rüdiger Schäbitz; Kai Diederich; Jens Minnerup

Background and Purpose— Although several studies have shown beneficial effects of training in animal stroke models, the most effective training strategy and the optimal time to initiate training have not been identified. The present meta-analysis was performed to compare the efficacy of different training strategies and to determine the optimal time window for training in animal stroke models. Methods— We searched the literature for studies analyzing the efficacy of training in animal models of ischemic stroke. Training was categorized into forced physical training, voluntary physical training, constraint-induced movement therapy, and skilled reaching training. Two reviewers independently extracted data on study quality, infarct size, and neurological outcome. Data were pooled by means of a meta-analysis. Results— Thirty-five studies with >880 animals were included. A meta-analysis of all treatments showed that training reduced the infarct volume by 14% (95% confidence interval, 2%–25%) and improved the cognitive function by 33% (95% confidence interval, 8%–50%), the neuroscore by 13.4% (95% confidence interval, 1.5%–25.3%), and the running function by 6.6% (95% confidence interval, 1.4%–11.9%). Forced physical training reduced the infarct volume and enhanced the running function most effectively, whereas skilled reaching training improved the limb function most effectively. A meta-regression illustrated that training was particularly efficacious when initiated between 1 and 5 days after stroke onset. Conclusions— Our meta-analysis confirms that training reduces the infarct volume and improves the functional recovery in animal stroke models. Forced physical training and skilled reaching training were identified as particularly effective training strategies. The efficacy of training is time dependent.


Experimental & Translational Stroke Medicine | 2012

Photochemically induced ischemic stroke in rats

Antje Schmidt; Maike Hoppen; Jan-Kolja Strecker; Kai Diederich; Wolf-Rüdiger Schäbitz; Matthias Schilling; Jens Minnerup

BackgroundPhotothrombosis was introduced as a model of ischemic stroke by Watson et al. in 1985. In the present paper, we describe a protocol to induce photothrombotic infarcts in rats.FindingsThe photosensitive dye Bengal Rose is intravenously administered and a laser beam is stereotactically positioned onto the skull. Illumination through the intact skull leads to local activation of Bengal Rose, which results in free radical formation, disturbance of endothelial function and thrombus formation in illuminated small cortical vessels.ConclusionsPhotochemically induced infarcts cause long-term sensorimotor deficits, allow long-term survival and are particularly suitable to assess the effectiveness of neuroregenerative therapies in chronic stroke studies.

Collaboration


Dive into the Kai Diederich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge