Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeong Tae Koh is active.

Publication


Featured researches published by Jeong Tae Koh.


Bone | 2011

Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2.

Won Gu Jang; Eun Jung Kim; In Ho Bae; Kkot Nim Lee; Yong Deuk Kim; Don Kyu Kim; Sun Hun Kim; Chul Ho Lee; Renny T. Franceschi; Hueng Sik Choi; Jeong Tae Koh

Metformin is an oral anti-diabetic drug of the biguanide class that is commonly used to treat type 2 diabetes mellitus. This study examined the molecular mechanism for the action of metformin on osteoblast differentiation. Metformin-induced mRNA expression of the osteogenic genes and small heterodimer partner (SHP) in MC3T3E1 cells were determined by RT-PCR and real-time PCR. Metformin increased significantly the expression of the key osteogenic genes, such as alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP) as well as SHP. Transient transfection assays were performed in MC3T3E1 cells to confirm the effects of metformin on SHP, OC and Runx2 promoter activities. Metformin increased the transcription of the SHP and OC genes, and the metformin effect was inhibited by dominant negative form of AMPK (DN-AMPK) or compound C (an inhibitor of AMPK). The adenoviral overexpression of SHP increased significantly the level of ALP staining and OC production. However, metformin did not have any significant effect on osteogenic gene expression, ALP staining and activity, and OC production in SHP null (SHP-/-) primary calvarial cells. Moreover, upstream stimulatory factor-1 (USF-1) specifically mediated metformin-induced SHP gene expression. In addition, metformin-induced AMPK activation increased the level of Runx2 mRNA and protein. However, USF-1 and SHP were not involved in metformin-induced Runx2 expression. Transient transfection and chromatin immunoprecipitation assays confirmed that metformin-induced SHP interacts physically and forms a complex with Runx2 on the osteocalcin gene promoter in MC3T3E1 cells. These results suggest that metformin may stimulate osteoblast differentiation through the transactivation of Runx2 via AMPK/USF-1/SHP regulatory cascade in mouse calvaria-derived cells.


Vaccine | 2012

Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection

Young Ho Byun; Chung Truong Nguyen; Soo Young Kim; Baik Lin Seong; Songyong Park; Gyu Jin Woo; Yeup Yoon; Jeong Tae Koh; Kohtaro Fujihashi; Joon Haeng Rhee; Shee Eun Lee

The influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant. The development of a safe and effective mucosal adjuvant is a prerequisite to the practical use of a mucosal inactivated influenza vaccine. We have previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, when mixed with antigen and administered intranasally, exerts a strong mucosal adjuvant activity by stimulating the Toll-like receptor 5 (TLR5). In this study, we tested whether the FlaB protein could serve as an effective mucosal adjuvant for an inactivated trivalent influenza vaccine (TIV) manufactured for humans; in a murine vaccination model, this vaccine consists of A/Brisbane/59/07 (H1N1 subtype), A/Uruguay/716/07 (H3N2 subtype), and B/Florida/4/06 (B type). Intranasal co-administration of the TIV with FlaB induced prominent humoral responses as demonstrated by high influenza-specific IgA levels in both the mucosal secretions and serum and significant specific IgG induction in the systemic compartment. The FlaB protein significantly potentiated influenza-specific cytokine production by draining lymph node cells and splenocytes. The FlaB mucosal adjuvant conferred excellent protection against a lethal challenge with a live virulent virus with high hemagglutination inhibition (HAI) antibody (Ab) titers. The FlaB did not accumulate in the olfactory nerve and epithelium, guaranteeing against a retrograde uptake into the central nervous system. These results suggest that FlaB can be used as a promising mucosal adjuvant for nasal inactivated influenza vaccine development.


Molecular Brain Research | 2001

Characterization of mouse brain-specific angiogenesis inhibitor 1 (BAI1) and phytanoyl-CoA alpha-hydroxylase-associated protein 1, a novel BAI1-binding protein

Jeong Tae Koh; Zang Hee Lee; Kyu Youn Ahn; Jong Keun Kim; Choon Sang Bae; Hong-Hee Kim; Hae Jin Kee; Kyung Keun Kim

Previously, PAHX-AP1 (PAHX-associated protein 1) was isolated as a novel protein to interact with Refsum disease gene product (phytanoyl-CoA alpha-hydroxylase, PAHX) and specifically expressed in mouse brain. PAHX-AP1 is also suggested to be involved in the development of the central neurologic deficits of Refsum disease. To clarify its function, we have searched for proteins that associate with PAHX-AP1 via yeast two-hybrid system. We found that PAHX-AP1 interacts with the cytoplasmic region of human brain-specific angiogenesis inhibitor 1 (hBAI1), and isolated murine homolog of hBAI1. Structural analysis of the PAHX-AP1 with three reported hBAI-associated proteins (BAP) revealed no homology among them, and we designated PAHX-AP1 as BAP4. The ability of BAP4 to interact with BAI1 was confirmed by pulling-down BAI1 with GST-BAP4 protein and immunoprecipitation study using brain lysate. Northern and Western blot analyses demonstrated a unique pattern of BAI1 expression in the brain. The peak level of BAI1 was observed 10 days after birth. In situ hybridization analyses of the brain showed the same localization of BAI1 as BAP4, such as most neurons of cerebral cortex, hippocampus, and V, VI, VII, VIII, and XII nuclei. Because BAI1 possessed thrombospondin-type 1 repeats in its extracellular region, changes of BAI1 expression were examined in the focal cerebral ischemia model. The BAI1 expression decreased on the ischemic side after 24 h but BAP4 was not changed after the time-course of ischemia. Our results indicate that expression and localization of BAI1 in the brain is correlated with BAP4, and that BAI1 is involved in inhibition of angiogenesis and neuronal differentiation.


Journal of Cerebral Blood Flow and Metabolism | 2002

Expression of Brain-Specific Angiogenesis Inhibitor 2 (BAI2) in Normal and Ischemic Brain: Involvement of BAI2 in the Ischemia-Induced Brain Angiogenesis:

Hae Jin Kee; Jeong Tae Koh; Mi-Young Kim; Kyu Youn Ahn; Jong Keun Kim; Choon Sang Bae; Sung Sik Park; Kyung Keun Kim

Previously, the authors cloned and characterized murine brain-specific angiogenesis inhibitor 1 (mBAI1). In this study, the authors cloned mBAI2 and analyzed its functional characteristics. Northern and Western blot analyses demonstrated a unique developmental expression pattern of mBAI2 in the brain. The expression level of mBAI2 appeared to increase as the development of the brain progressed. Reverse transcription-polymerase chain reaction (RT-PCR) analyses demonstrated the existence of alternative splice variants of mBAI2, which were defective in parts of type I repeat of thrombospondin or the third cytoplasmic loop of the seven-span transmembrane domain that were considered essential to the functions of mBAI2. The expressions of spliced variants in the brain were differently regulated compared with wild-type mBAI2 during development and ischemic conditions. In situ hybridization analyses of the brain showed the same localization of BAI2 as BAI1, such as in most neurons of cerebral cortex. In the in vivo focal cerebral ischemia model and the in vitro hypoxic cell culture model with cobalt, BAI2 expression decreased after hypoxia and preceded the increased expression of vascular endothelial growth factor (VEGF). RT-PCR analysis of antisense BAI2 cDNA-transfected SHSY5Y cells showed an increased VEGF expression as well as a decreased BAI2 expression. Immunohistochemical study of focal ischemic cortex showed that the regional localization of decreased BAI2 was related to the formation of new vessels. These results suggest that the brain-specific developmental expression pattern of angiostatic BAI2 is correlated with the decreased neovascularization in the adult brain, and that angiostatic BAI2 participates in the ischemia-induced brain angiogenesis in concert with angiogenic VEGF.


Journal of Biological Chemistry | 2009

The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation

Byung Chul Jeong; Yong Soo Lee; Yun Yong Park; In Ho Bae; Don Kyu Kim; Seung Hoi Koo; Hong Ran Choi; Sun Hun Kim; Renny T. Franceschi; Jeong Tae Koh; Hueng Sik Choi

Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity.


Biochemical and Biophysical Research Communications | 2010

Outer membrane vesicles of Vibrio vulnificus deliver cytolysin-hemolysin VvhA into epithelial cells to induce cytotoxicity.

Young Ran Kim; Bang Ul Kim; Soo Young Kim; Choon Mee Kim; Hee Sam Na; Jeong Tae Koh; Hyon E. Choy; Joon Haeng Rhee; Shee Eun Lee

The Gram-negative bacterium Vibrio vulnificus produces cytotoxins that induce the acute death of host cells. However, the secretory mechanisms of such cytotoxins have not been extensively studied. Previously, we reported that substantial amounts of V. vulnificus cytolysin-hemolysin (VvhA) are produced in vivo during the bacterial infection in mice and that this cytotoxin, in conjunction with RtxA1, mediates cytotoxicity. In this study, we investigated whether V. vulnificus cells release outer membrane vesicles (OMVs), which are used by some Gram-negative bacteria to deliver virulence factors into host cells. We found that V. vulnificus produce OMVs and that these vesicles can induce host cell death. This process appears to be mediated by VvhA, as evidenced by the finding that OMVs isolated from VvhA-null mutants do not induce cytotoxicity. In addition, cholesterol sequestration in the host cells prevents OMV-mediated VvhA delivery, indicating that VvhA-bearing OMVs interact with cholesterol on the host cell surface. Furthermore, intracellular expression experiments revealed that VvhA-mediated cytotoxicity is driven by its N-terminal leukocidin domain.


Journal of Clinical Immunology | 2008

Inhibition of airway allergic disease by co-administration of flagellin with allergen.

Shee Eun Lee; Youngil Koh; Mi-Kwang Kim; Young Ran Kim; Soo Young Kim; Jong Hee Nam; Yoo Duk Choi; Soo Jang Bae; Young Jong Ko; Hwa-Ja Ryu; Jeong Tae Koh; Hyon E. Choy; Joon Haeng Rhee

Bacterial flagellin, which activates Toll-like receptor 5 and cytosolic pattern recognition receptor Ipaf, has a strong immunomodulatory activity. In the present study, we examined whether intranasal co-administration of flagellin with allergen could modulate established airway hyperresponsiveness and Th2 response using an ovalbumin (OVA)-sensitized mouse model. Balb/c mice sensitized with OVA were treated with OVA–flagellin (FlaB) mixture three times at 1-week intervals. Seven days after the final OVA–FlaB administration, the mice were challenged with OVA inhalation, and airway responses and OVA-specific immune responses were evaluated. The OVA–FlaB treatment significantly suppressed OVA-induced airway hyperresponsiveness, airway eosinophilic inflammation, and OVA-specific Th2 cytokine productions in splenocytes. These results indicate that flagellin co-administered with allergen can modulate airway inflammatory response through inhibition of Th2 responses, and flagellin can be considered as a component for allergen-specific immunotherapy.


Journal of Biological Chemistry | 2012

Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity

Kkot Nim Lee; Won Gu Jang; Eun Jung Kim; Sin Hye Oh; Hye Ju Son; Sun Hun Kim; Renny T. Franceschi; Xiao-kun Zhang; Shee Eun Lee; Jeong Tae Koh

Background: COUP-TFII, an orphan nuclear receptor, regulates the differentiation process in various cell types during development. Results: COUP-TFII inhibits Runx2-dependent osteocalcin transcription through physical interaction with Runx2 and matrix mineralization. Conclusion: COUP-TFII is a negative regulator of osteoblast differentiation. Significance: COUP-TFII has therapeutic potential for controlling bone-related disease. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.


Journal of Bone and Mineral Research | 2010

The Orphan Nuclear Receptor SHP Is a Positive Regulator of Osteoblastic Bone Formation

Byung Chul Jeong; Yong Soo Lee; In Ho Bae; Chul Ho Lee; Hong In Shin; Hyun Jung Ha; Renny T. Franceschi; Hueng Sik Choi; Jeong Tae Koh

The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) interacts with a diverse array of transcription factors and regulates a variety of cellular events such as cell proliferation, differentiation, and metabolism. However, the role of SHP in bone formation has not yet been elucidated. SHP expression is significantly increased during osteoblast differentiation, and its expression is partially regulated by bone morphogenetic protein 2 (BMP‐2), which plays an important role in bone formation. In our study, inhibition of SHP expression significantly repressed BMP‐2‐induced osteoblast differentiation and ectopic bone formation. In accordance with these in vitro and in vivo results, osteoblast differentiation in SHP−/− mice primary osteoblasts was significantly repressed, and the mice showed decreased bone mass resulting from decreased numbers of osteoblasts. Finally, SHP physically interacts and forms a complex with runt‐related transcription factor 2 (Runx2) on the osteocalcin gene promoter, and overexpression of SHP increased Runx2 transactivity via competition with histone deacetylase 4 (HDAC4), an enzyme that inhibits DNA binding of Runx2 to its target genes. Taken together, these results indicate that SHP acts as a novel positive regulator of bone formation by augmenting osteoblast differentiation through regulation of the transcriptional activity of Runx2.


Biochemical and Biophysical Research Communications | 2003

A novel murine long-chain acyl-CoA synthetase expressed in brain participates in neuronal cell proliferation.

Hae Jin Kee; Jeong Tae Koh; Sung Yeul Yang; Zang Hee Lee; Yung Hong Baik; Kyung Keun Kim

Refsum disease (RfD) is an autosomal recessive neurologic disorder of the lipid metabolism. We have identified a novel murine long-chain acyl-CoA synthetase (mLACS) associated with the RfD gene using yeast two-hybrid assay. Northern blot analyses revealed that mLACS was expressed mainly in the brain and testis. mLACS was highly expressed in the brain at 2 weeks after birth and maintained through adult life. Expressions of the brain-specific LACS family increased in the PC12 cells undergoing neurite outgrowth by nerve growth factor. mLACS preferentially catalyzed the formation of arachidonoyl-CoA more than palmitoyl-CoA or oleoyl-CoA in PC12 cells. Triacsin C, an inhibitor of LACS, suppressed the cell proliferation and decreased mLACS expression in parent PC12 cells, but not in stably anti-sense mLACS cDNA-transfected cells. Our results indicate that mLACS participates in neuronal cell proliferation and differentiation, and interaction of the RfD gene with brain-selective mLACS may be involved in the pathogenesis of RfD.

Collaboration


Dive into the Jeong Tae Koh's collaboration.

Top Co-Authors

Avatar

Kyung Keun Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Shee Eun Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Byung Chul Jeong

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kyu Youn Ahn

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Joon Haeng Rhee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hueng Sik Choi

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Soo Young Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hae Jin Kee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyon E. Choy

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge