Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shee Eun Lee is active.

Publication


Featured researches published by Shee Eun Lee.


Frontiers in Microbiology | 2014

Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore

Wenzhi Tan; Vivek Verma; Kwangjoon Jeong; Soo Young Kim; Che-Hun Jung; Shee Eun Lee; Joon Haeng Rhee

Vibrio vulnificus is a halophilic estuarine bacterium that causes fatal septicemia and necrotizing wound infections in humans. Virulent V. vulnificus isolates produce a catechol siderophore called vulnibactin, made up of one residue of 2, 3-dihydroxybenzoic acid (2, 3-DHBA) and two residues of salicylic acid (SA). Vulnibactin biosynthetic genes (VV2_0828 to VV2_0844) are clustered at one locus of chromosome 2, expression of which is significantly up-regulated in vivo. In the present study, we decipher the biosynthetic network of vulnibactin, focusing specifically on genes around SA and 2, 3-DHBA biosynthetic steps. Deletion mutant of isochorismate pyruvate lyase (VV2_0839) or 2, 3-dihydroxybenzoate-2, 3-dehydrogenase (VV2_0834) showed retarded growth under iron-limited conditions though the latter showed more significant growth defect than the former, suggesting a dominant role of 2, 3-DHBA in the vulnibactin biosynthesis. A double deletion mutant of VV2_0839 and VV2_0834 manifested additional growth defect under iron limitation. Though the growth defect of respective single deletion mutants could be restored by exogenous SA or 2, 3-DHBA, only 2, 3-DHBA could rescue the double mutant when supplied alone. However, double mutant could be rescued with SA only when hydrogen peroxide was supplied exogenously, suggesting a chemical conversion of SA to 2, 3-DHBA. Assembly of two SA and one 2, 3-DHBA into vulnibactin was mediated by two AMP ligase genes (VV2_0836 and VV2_0840). VV2_0836 deletion mutant showed more significant growth defect under iron limitation, suggesting its dominant function. In conclusion, using molecular genetic analytical tools, we confirm that vulnibactin is assembled of both 2, 3-DHBA and SA. However, conversion of SA to 2, 3-DHBA in presence of hydrogen peroxide and growth profile of AMP ligase mutants suggest a plausible existence of yet unidentified alternative siderophore that may be composed solely of 2, 3-DHBA.


Infection and Immunity | 2003

Characterization and Pathogenic Significance of Vibrio vulnificus Antigens Preferentially Expressed in Septicemic Patients

Young Ran Kim; Shee Eun Lee; Choon Mee Kim; Soo Young Kim; Eun Kyoung Shin; Dong Hyeon Shin; Sun Sik Chung; Hyon E. Choy; Ann Progulske-Fox; Jeffrey D. Hillman; Martin Handfield; Joon Haeng Rhee

ABSTRACT Many important virulence genes of pathogenic bacteria are preferentially expressed in vivo. We used the recently developed in vivo-induced antigen technology (IVIAT) to identify Vibrio vulnificus genes induced in vivo. An expression library of V. vulnificus was screened by colony blot analysis by using pooled convalescent-phase serum that had been thoroughly adsorbed with in vitro-expressed V. vulnificus whole cells and lysates. Twelve clones were selected, and the sequences of the insert DNAs were analyzed. The DNA sequences showed homologies with genes encoding proteins of diverse functions: these functions included chemotaxis (a methyl-accepting chemotaxis protein), signaling (a GGDEF-containing protein and a putative serine/threonine kinase), biosynthesis and metabolism (PyrH, PurH, and IlvC), secretion (TatB and plasmid Achromobacter secretion [PAS] factor), transcriptional activation (IlvY and HlyU), and the activity of a putative lipoprotein (YaeC). In addition, one identified open reading frame encoded a hypothetical protein. Isogenic mutants of the 12 in vivo-expressed (ive) genes were constructed and tested for cytotoxicity. Cytotoxic activity of the mutant strains, as measured by lactate dehydrogenase release from HeLa cells, was nearly abolished in pyrH, purH, and hlyU mutants. The intraperitoneal 50% lethal dose in mice increased by ca. 10- to 50-fold in these three mutants. PyrH and PurH seem to be essential for in vivo growth. HlyU appears to be one of the master regulators of in vivo virulence expression. The successful identification of ive genes responsible for the in vivo bacterial virulence, as done in the present study, demonstrates the usefulness of IVIAT for the detection of new virulence genes.


Molecular Microbiology | 2003

Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system

Soo Young Kim; Shee Eun Lee; Young Ran Kim; Choon Mee Kim; Phil Youl Ryu; Hyon E. Choy; Sun Sik Chung; Joon Haeng Rhee

Vibrio vulnificus is a halophilic estuarine bacterium that causes fatal septicaemia and necrotizing wound infections. We tested whether V. vulnificus produces signalling molecules (autoinducer 1 and/or 2) stimulating Vibrio harveyi quorum‐sensing system 1 and/or 2. Although there was no evidence for signalling system 1, we found that V. vulnificus produced a signalling activity in the culture supernatant that induced luminescence expression in V. harveyi through signalling system 2. Maximal autoinducer 2 (AI‐2) activity was observed during mid‐exponential to early stationary phase and disappeared in the late stationary phase when V. vulnificus was grown in heart infusion broth containing 2.5% NaCl. V. vulnificus showed increased signalling activity when it was cultured in the presence of glucose (0.5%) and at low pH (pH 6.0). From a cosmid library of V. vulnificus type strain ATCC 29307, we have identified the AI‐2 synthase gene (luxSVv) showing 80% identity with that of V. harveyi (luxSVh) at the amino acid level. To investigate the pathogenic role of luxSVv, a deletion mutant of the clinical isolate V. vulnificus MO6‐24/O was constructed. The luxSVv mutant showed a significant delay in protease production and an increase in haemolysin production. The decreased protease and increased haemolysin activities were restored to the isogenic wild‐type level by complementation with the wild‐type luxSVv allele. The change in phenotypes was also complemented by logarithmic phase spent media produced by the wild‐type bacteria. Transcriptional activities of the haemolysin gene (vvhA) and protease gene (vvpE) were also observed in the mutant using chromosomal PvvhA::lacZ and PvvpE::lacZ transcriptional reporter constructs: transcription of vvhA was increased and of vvpE decreased by the mutation. The mutation resulted in an attenuation of lethality to mice. Intraperitoneal LD50 of the luxSVv mutant increased by 10‐ and 750‐fold in ferric ammonium citrate‐non‐overloaded and ferric ammonium citrate‐overloaded mice respectively. The time required for the death of mice was also significantly delayed in the luxSVv mutant. Cytotoxic activity of the organism against HeLa cells, measured by lactate dehydrogenase (LDH) release assay, was also decreased significantly by the mutation. Taken together, the V. vulnificus LuxS quorum‐sensing system seems to play an important role in co‐ordinating the expression of virulence factors.


Infection and Immunity | 2006

A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity

Shee Eun Lee; Soo Young Kim; Byung Chul Jeong; Young Ran Kim; Soo Jang Bae; Ouk Seon Ahn; Je-Jung Lee; Ho-Chun Song; Jung Mogg Kim; Hyon E. Choy; Sun Sik Chung; Mi-Na Kweon; Joon Haeng Rhee

ABSTRACT Flagellin, the structural component of flagellar filament in various locomotive bacteria, is the ligand for Toll-like receptor 5 (TLR5) of host cells. TLR stimulation by various pathogen-associated molecular patterns leads to activation of innate and subsequent adaptive immune responses. Therefore, TLR ligands are considered attractive adjuvant candidates in vaccine development. In this study, we show the highly potent mucosal adjuvant activity of a Vibrio vulnificus major flagellin (FlaB). Using an intranasal immunization mouse model, we observed that coadministration of the flagellin with tetanus toxoid (TT) induced significantly enhanced TT-specific immunoglobulin A (IgA) responses in both mucosal and systemic compartments and IgG responses in the systemic compartment. The mice immunized with TT plus FlaB were completely protected from systemic challenge with a 200× minimum lethal dose of tetanus toxin. Radiolabeled FlaB administered into the nasal cavity readily reached the cervical lymph nodes and systemic circulation. FlaB bound directly to human TLR5 expressed on cultured epithelial cells and consequently induced NF-κB and interleukin-8 activation. Intranasally administered FlaB colocalized with CD11c as patches in putative dendritic cells and caused an increase in the number of TLR5-expressing cells in cervical lymph nodes. These results indicate that flagellin would serve as an efficacious mucosal adjuvant inducing protective immune responses through TLR5 activation.


Cellular Microbiology | 2008

Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells.

Young Ran Kim; Shee Eun Lee; Hyun Kook; Jung A. Yeom; Hee Sam Na; Soo Young Kim; Sun Sik Chung; Hyon E. Choy; Joon Haeng Rhee

Vibrio vulnificus causes acute cell death and a fatal septicaemia. In this study, we show that contact with host cells is a prerequisite to the acute cytotoxicity. We screened transposon mutants defective in the contact‐dependent cytotoxicity. Two mutants had insertions within two open reading frames in a putative RTX toxin operon, the rtxA1 or rtxD encoding an RTX toxin (4701 amino acids) or an ABC type transporter (467 amino acids). An rtxA1 mutation resulted in a cytotoxicity defect, which was fully restored by in trans complementation. The expression of RtxA1 toxin increased after host cell contact in a time‐dependent manner. The RtxA1 toxin induced cytoskeletal rearrangements and plasma membrane blebs, which culminated in a necrotic cell death. RtxA1 colocalized with actin and caused actin aggregation coinciding with a significant decrease in the F/G actin ratio. The RtxA1 toxin caused haemolysis through pore formation (radius 1.63 nm). The rtxA1 deletion mutant was defective in invading the blood stream from ligated ileal loops of CD1 mice. The rtxA1 null mutation resulted in over 100‐fold increase in both intragastric and intraperitoneal LD50s against mice. Overall, these results show that the RtxA1 toxin is a multifunctional cytotoxin and plays an essential role in the pathogenesis of V. vulnificus infections.


Infection and Immunity | 2000

Construction and Phenotypic Evaluation of a Vibrio vulnificus vvpE Mutant for Elastolytic Protease

Kwang Cheol Jeong; Hye Sook Jeong; Joon Haeng Rhee; Shee Eun Lee; Sun Sik Chung; Angela M. Starks; Gloria M. Escudero; Paul A. Gulig; Sang Ho Choi

ABSTRACT Vibrio vulnificus is an opportunistic gram-negative pathogen that commonly contaminates oysters. Predisposed individuals who consume raw oysters can die within days from sepsis, and even otherwise healthy people are susceptible to serious wound infection after contact with contaminated seafood or seawater. Numerous secreted and cell-associated virulence factors have been proposed to account for the fulminating and destructive nature of V. vulnificusinfections. Among the putative virulence factors is an elastolytic metalloprotease. We cloned and sequenced the vvpE gene encoding an elastase of V. vulnificus ATCC 29307. The functions of the elastase were assessed by constructingvvpE insertional knockout mutants and evaluating phenotypic changes in vitro and in mice. Although other types of protease activity were still observed in vvpE mutants, elastase activity was completely absent in the mutants and was restored by reintroducing the recombinant vvpE gene. In contrast to previous characterization of elastase as a potential virulence factor, which was demonstrated by injecting the purified protein into animals, inactivation of the V. vulnificus vvpE gene did not affect the ability of the bacteria to infect mice and cause damage, either locally in subcutaneous tissues or systemically in the liver, in both iron-treated and normal mice. Furthermore, a vvpE mutant was not affected with regard to cytolytic activity toward INT407 epithelial cells or detachment of INT407 cells from culture dishes in vitro. Therefore, it appears that elastase is less important in the pathogenesis of V. vulnificus than would have been predicted by examining the effects of administering purified proteins to animals. However, V. vulnificus utilizes a variety of virulence factors; hence, the effects of inactivation of elastase alone could be masked by other compensatory virulence factors.


Journal of Bacteriology | 2000

Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA.

Shee Eun Lee; Sung Heui Shin; Soo Young Kim; Young Ran Kim; Dong Hyeon Shin; Sun Sik Chung; Zang Hee Lee; Jee Yeon Lee; Kwang Choel Jeong; Sang Ho Choi; Joon Haeng Rhee

In an attempt to dissect the virulence regulatory mechanism in Vibrio vulnificus, we tried to identify the V. cholerae transmembrane virulence regulator toxRS (toxRS(Vc)) homologs in V. vulnificus. By comparing the sequences of toxRS of V. cholerae and V. parahaemolyticus (toxRS(Vp)), we designed a degenerate primer set targeting well-conserved sequences. Using the PCR product as an authentic probe for Southern blot hybridization, a 1.6-kb BglII-HindIII fragment and a 1.2-kb HindIII fragment containing two complete open reading frames and one partial open reading frame attributable to toxR(Vv), toxS(Vv), and htpG(Vv) were cloned. ToxR(Vv) shared 55.0 and 63.0% sequence homology with ToxR(Vc) and ToxR(Vp), respectively. ToxS(Vv) was 71.5 and 65.7% homologous to ToxS(Vc) and ToxS(Vp), respectively. The amino acid sequences of ToxRS(Vv) showed transmembrane and activity domains similar to those observed in ToxRS(Vc) and ToxRS(Vp). Western blot analysis proved the expression of ToxR(Vv) in V. vulnificus. ToxRS(Vv) enhanced, in an Escherichia coli background, the expression of the V. vulnificus hemolysin gene (vvhA) fivefold. ToxRS(Vv) also activated the ToxR(Vc)-regulated ctx promoter incorporated into an E. coli chromosome. A toxR(Vv) null mutation decreased hemolysin production. The defect in hemolysin production could be complemented by a plasmid harboring the wild-type gene. The toxR(Vv) mutation also showed a reversed outer membrane protein expression profile in comparison to the isogenic wild-type strain. These results demonstrate that ToxR(Vv) may regulate the virulence expression of V. vulnificus.


Vaccine | 2011

Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice

Chung Truong Nguyen; Soo Young Kim; Myoung Suk Kim; Shee Eun Lee; Joon Haeng Rhee

Streptococcus pneumoniae is a major respiratory pathogen that causes high levels of mortality and morbidity in infants and the elderly. Despite the use of antibiotics and vaccines, fatal pneumococcal disease remains prevalent. Pneumococcal surface protein A (PspA), a highly immunogenic surface protein produced by all strains of S. pneumoniae, can elicit protective immunity against fatal pneumococcal infection. We have previously demonstrated that the Vibrio vulnificus FlaB, a bacterial flagellin protein and agonist of TLR5, has strong mucosal adjuvant activity and induces protective immunity upon co-administration with tetanus toxoid. In this study, we have tested whether intranasal immunization with recombinant fusion proteins consisted of PspA and FlaB (PspA-FlaB and FlaB-PspA) is able to elicit more efficient protective mucosal immune responses against pneumococcal infection than immunization with PspA alone or with a stoichiometric mixture of PspA and FlaB. When mice were intranasally immunized with fusion proteins, significantly higher levels of anti-PspA IgG and IgA were induced in serum and mucosal secretions. The mice immunized intranasally with the FlaB-PspA fusion protein were the most protected from a lethal challenge with live S. pneumoniae, as compared to the mice immunized with PspA only, a mixture of PspA and FlaB, or the PspA-FlaB fusion protein. FlaB-PspA also induced a cross protection against heterologous capsular types. These results suggest that a FlaB-PspA fusion protein alone could be used as an anti-pneumococcal mucosal vaccine or as an effective partner protein for multivalent capsular polysaccharide conjugate vaccines.


Vaccine | 2012

Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection

Young Ho Byun; Chung Truong Nguyen; Soo Young Kim; Baik Lin Seong; Songyong Park; Gyu Jin Woo; Yeup Yoon; Jeong Tae Koh; Kohtaro Fujihashi; Joon Haeng Rhee; Shee Eun Lee

The influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant. The development of a safe and effective mucosal adjuvant is a prerequisite to the practical use of a mucosal inactivated influenza vaccine. We have previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, when mixed with antigen and administered intranasally, exerts a strong mucosal adjuvant activity by stimulating the Toll-like receptor 5 (TLR5). In this study, we tested whether the FlaB protein could serve as an effective mucosal adjuvant for an inactivated trivalent influenza vaccine (TIV) manufactured for humans; in a murine vaccination model, this vaccine consists of A/Brisbane/59/07 (H1N1 subtype), A/Uruguay/716/07 (H3N2 subtype), and B/Florida/4/06 (B type). Intranasal co-administration of the TIV with FlaB induced prominent humoral responses as demonstrated by high influenza-specific IgA levels in both the mucosal secretions and serum and significant specific IgG induction in the systemic compartment. The FlaB protein significantly potentiated influenza-specific cytokine production by draining lymph node cells and splenocytes. The FlaB mucosal adjuvant conferred excellent protection against a lethal challenge with a live virulent virus with high hemagglutination inhibition (HAI) antibody (Ab) titers. The FlaB did not accumulate in the olfactory nerve and epithelium, guaranteeing against a retrograde uptake into the central nervous system. These results suggest that FlaB can be used as a promising mucosal adjuvant for nasal inactivated influenza vaccine development.


The Journal of Infectious Diseases | 2010

RtxA1-Induced Expression of the Small GTPase Rac2 Plays a Key Role in the Pathogenicity of Vibrio vulnificus

Kyoung-Jin Chung; Eun-Jin Cho; Mi Kwang Kim; Young Ran Kim; Seok-Ho Kim; Hee-Young Yang; Ki-Chul Chung; Shee Eun Lee; Joon Haeng Rhee; Hyon E. Choy; Tae-Hoon Lee

Infection with the human pathogen Vibrio vulnificus leads to the generation of reactive oxygen species (ROS) via NAD(P)H oxidase (Nox) in host cells. In the present study, we employed mutant V. vulnificus strains to identify an essential virulence factor responsible for this ROS generation. We found that repeats-in-toxin A1 (RtxA1) expressed by V. vulnificus acts via Nox1 to induce significant ROS generation in the intestine epithelial cells, which ultimately results in cell death. Furthermore, RtxA1 modulates the small GTPase Rac2, which is known to play an important role in the activation of Nox. When mice were infected by the oral method, in contrast with the wild-type bacteria, an RtxA1-deficient V. vulnificus mutant was unable to induce ROS generation within the intestine and failed to cause death. These findings strongly suggest that RtxA1-induced Rac2 expression is a critical step underlying the pathogenicity of V. vulnificus.

Collaboration


Dive into the Shee Eun Lee's collaboration.

Top Co-Authors

Avatar

Joon Haeng Rhee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Soo Young Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Young Ran Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyon E. Choy

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Sun Sik Chung

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kwangjoon Jeong

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Choon Mee Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Tae Koh

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Soo Young Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge