Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeramiah J. Smith is active.

Publication


Featured researches published by Jeramiah J. Smith.


Nature | 2013

The African coelacanth genome provides insights into tetrapod evolution.

Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Nature Genetics | 2013

Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution.

Jeramiah J. Smith; Shigehiro Kuraku; Carson Holt; Tatjana Sauka-Spengler; Ning Jiang; Michael S. Campbell; Mark Yandell; Tereza Manousaki; Axel Meyer; Ona Bloom; Jennifer R. Morgan; Joseph D. Buxbaum; Ravi Sachidanandam; Carrie Sims; Alexander S. Garruss; Malcolm Cook; Robb Krumlauf; Leanne M. Wiedemann; Stacia A. Sower; Wayne A. Decatur; Jeffrey A. Hall; Chris T. Amemiya; Nil Ratan Saha; Katherine M. Buckley; Jonathan P. Rast; Sabyasachi Das; Masayuki Hirano; Nathanael McCurley; Peng Guo; Nicolas Rohner

Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.


Nature Genetics | 2016

The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

Ingo Braasch; Andrew R. Gehrke; Jeramiah J. Smith; Kazuhiko Kawasaki; Tereza Manousaki; Jeremy Pasquier; Angel Amores; Thomas Desvignes; Peter Batzel; Julian M. Catchen; Aaron M. Berlin; Michael S. Campbell; Daniel Barrell; Kyle J Martin; John F. Mulley; Vydianathan Ravi; Alison P. Lee; Tetsuya Nakamura; Domitille Chalopin; Shaohua Fan; Dustin J. Wcisel; Cristian Cañestro; Jason Sydes; Felix E G Beaudry; Yi Sun; Jana Hertel; Michael J Beam; Mario Fasold; Mikio Ishiyama; Jeremy Johnson

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Rapid spread of invasive genes into a threatened native species.

Benjamin M. Fitzpatrick; Jarrett R. Johnson; D. Kevin Kump; Jeramiah J. Smith; S. Randal Voss; H. Bradley Shaffer

When introduced or cultivated plants or animals hybridize with their native relatives, the spread of invasive genes into native populations might have biological, aesthetic, and legal implications. Models suggest that the rate of displacement of native by invasive alleles can be rapid and inevitable if they are favored by natural selection. We document the spread of a few introduced genes 90 km into a threatened native species (the California Tiger Salamander) in 60 years. Meanwhile, a majority of genetic markers (65 of 68) show little evidence of spread beyond the region where introductions occurred. Using computer simulations, we found that such a pattern is unlikely to emerge by chance among selectively neutral markers. Therefore, our results imply that natural selection has favored both the movement and fixation of these exceptional invasive alleles. The legal status of introgressed populations (native populations that are slightly genetically modified) is unresolved by the US Endangered Species Act. Our results illustrate that genetic and ecological factors need to be carefully weighed when considering different criteria for protection, because different rules could result in dramatically different geographic areas and numbers of individuals being protected.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Programmed loss of millions of base pairs from a vertebrate genome

Jeramiah J. Smith; Francesca Antonacci; Evan E. Eichler; Chris T. Amemiya

In general, the strict preservation of broad-scale structure is thought to be critical for maintaining the precisely tuned functionality of vertebrate genomes, although nearly all vertebrate species undergo a small number of programmed local rearrangements during development (e.g., remodeling of adaptive immune receptor loci). However, a limited number of metazoan species undergo much more extensive reorganizations as a normal feature of their development. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate, undergoes a dramatic remodeling of its genome, resulting in the elimination of hundreds of millions of base pairs (and at least one transcribed locus) from many somatic cell lineages during embryonic development. These studies reveal the highly dynamic nature of the lamprey genome and provide the first example of broad-scale programmed rearrangement of a definitively vertebrate genome. Understanding the mechanisms by which this vertebrate species regulates such extensive remodeling of its genome will provide invaluable insight into factors that can promote stability and change in vertebrate genomes.


BMC Genomics | 2004

From biomedicine to natural history research: EST resources for ambystomatid salamanders

Srikrishna Putta; Jeramiah J. Smith; John A. Walker; Mathieu Rondet; David W. Weisrock; James R. Monaghan; Amy K. Samuels; D. Kevin Kump; David C. King; Nicholas J. Maness; Bianca Habermann; Elly M. Tanaka; Susan V. Bryant; David M. Gardiner; David M. Parichy; S. Randal Voss

BackgroundEstablishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories.ResultsApproximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species.ConclusionsOur study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research.


BMC Evolutionary Biology | 2009

Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders

Benjamin M. Fitzpatrick; Jarrett R. Johnson; D. Kevin Kump; H. Bradley Shaffer; Jeramiah J. Smith; S. Randal Voss

BackgroundHybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders.ResultsAt three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2s. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects.ConclusionWhile most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.


Current Biology | 2012

Genetic Consequences of Programmed Genome Rearrangement

Jeramiah J. Smith; Carl Baker; Evan E. Eichler; Chris T. Amemiya

The lamprey (Petromyzon marinus) undergoes developmentally programmed genome rearrangements that mediate deletion of∼20% of germline DNA from somatic cells during early embryogenesis. This genomic differentiation of germline and soma is intriguing, because the germline plays a unique biological role wherein it must possess the ability to undergo meiotic recombination and the capacity to differentiate into every cell type. These evolutionarily indispensable functions set the germline at odds with somatic tissues, because factors that promote recombination and pluripotency can potentially disrupt genome integrity or specification of cell fate when misexpressed in somatic cell lineages (e.g., in oncogenesis). Here, we describe the development of new genomic and transcriptomic resources for lamprey and use these to identify hundreds of genes that are targeted for programmed deletion from somatic cell lineages. Transcriptome sequencing and targeted validation studies further confirm that somatically deleted genes function both in adult (meiotic) germline and in the development of primordial germ cells during embryogenesis. Inferred functional information from deleted regions indicates that developmentally programmed rearrangement serves as a (perhaps ancient) biological strategy to ensure segregation of pluripotency functions to the germline, effectively eliminating the potential for somatic misexpression.


BMC Genomics | 2009

Genic regions of a large salamander genome contain long introns and novel genes

Jeramiah J. Smith; Srikrishna Putta; Wei Zhu; Gerald M. Pao; Inder M. Verma; Tony Hunter; Susan V. Bryant; David M. Gardiner; Timothy T. Harkins; S. Randal Voss

BackgroundThe basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp) were isolated and sequenced to characterize the structure of genic regions.ResultsAnnotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86%) of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases!ConclusionThis study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.


BMC Genomics | 2005

Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources

Jeramiah J. Smith; Srikrishna Putta; John A. Walker; D. Kevin Kump; Amy K. Samuels; James R. Monaghan; David W. Weisrock; Chuck Staben; S. Randal Voss

Salamanders of the genus Ambystoma are a unique model organism system because they enable natural history and biomedical research in the laboratory or field. We developed Sal-Site to integrate new and existing ambystomatid salamander research resources in support of this model system. Sal-Site hosts six important resources: 1) Salamander Genome Project: an information-based web-site describing progress in genome resource development, 2) Ambystoma EST Database: a database of manually edited and analyzed contigs assembled from ESTs that were collected from A. tigrinum tigrinum and A. mexicanum, 3) Ambystoma Gene Collection: a database containing full-length protein-coding sequences, 4) Ambystoma Map and Marker Collection: an image and database resource that shows the location of mapped markers on linkage groups, provides information about markers, and provides integrating links to Ambystoma EST Database and Ambystoma Gene Collection databases, 5) Ambystoma Genetic Stock Center: a website and collection of databases that describe an NSF funded salamander rearing facility that generates and distributes biological materials to researchers and educators throughout the world, and 6) Ambystoma Research Coordination Network: a web-site detailing current research projects and activities involving an international group of researchers. Sal-Site is accessible at http://www.ambystoma.org.

Collaboration


Dive into the Jeramiah J. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris T. Amemiya

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge