Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria F. Bonaldo is active.

Publication


Featured researches published by Maria F. Bonaldo.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.

Robert L. Strausberg; Elise A. Feingold; Lynette H. Grouse; Jeffery G. Derge; Richard D. Klausner; Francis S. Collins; Lukas Wagner; Carolyn M. Shenmen; Gregory D. Schuler; Stephen F. Altschul; Barry R. Zeeberg; Kenneth H. Buetow; Carl F. Schaefer; Narayan K. Bhat; Ralph F. Hopkins; Heather Jordan; Troy Moore; Steve I. Max; Jun Wang; Florence Hsieh; Luda Diatchenko; Kate Marusina; Andrew A. Farmer; Gerald M. Rubin; Ling Hong; Mark Stapleton; M. Bento Soares; Maria F. Bonaldo; Tom L. Casavant; Todd E. Scheetz

The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http://mgc.nci.nih.gov).


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Nature Genetics | 2003

Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni

Sergio Verjovski-Almeida; Ricardo DeMarco; Elizabeth A. L. Martins; Pedro Edson Moreira Guimarães; Elida B. Ojopi; Apuã C.M. Paquola; João Paulo Piazza; Milton Yutaka Nishiyama; João Paulo Kitajima; Rachel Adamson; Peter D. Ashton; Maria F. Bonaldo; Patricia S. Coulson; Gary P. Dillon; Leonardo P. Farias; Sheila P. Gregório; Paulo L. Ho; Ricardo A. Leite; L. Cosme C. Malaquias; Regina Célia Pereira Marques; Patricia A. Miyasato; Ana L. T. O. Nascimento; Fernanda Pires Ohlweiler; Eduardo M. Reis; Marcela A. Ribeiro; Renata G. Sá; Gaëlle C. Stukart; M. Bento Soares; Cybele Gargioni; Toshie Kawano

Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.


Nature Genetics | 1999

The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8

Susanna Ranta; Yonghui Zhang; Barbara M. Ross; Liina Lonka; Elina Takkunen; Anne Messer; Julie D. Sharp; Ruth B. Wheeler; Kenro Kusumi; Sara E. Mole; Wencheng Liu; Marcelo B. Soares; Maria F. Bonaldo; A Hirvasniemi; Albert de la Chapelle; T. Conrad Gilliam; Anna-Elina Lehesjoki

The neuronal ceroid lipofuscinoses (NCLs) are a genetically heterogeneous group of progressive neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in various tissues. Progressive epilepsy with mental retardation (EPMR, MIM 600143) was recently recognized as a new NCL subtype (CLN8). It is an autosomal recessive disorder characterized by onset of generalized seizures between 5 and 10 years, and subsequent progressive mental retardation. Here we report the positional cloning of a novel gene, CLN8, which is mutated in EPMR. It encodes a putative transmembrane protein. EPMR patients were homozygous for a missense mutation (70C→G, R24G) that was not found in homozygosity in 433 controls. We also cloned the mouse Cln8 sequence. It displays 82% nucleotide identity with CLN8, conservation of the codon harbouring the human mutation and is localized to the same region as the motor neuron degeneration mouse, mnd, a naturally occurring mouse NCL (ref. 4). In mnd/mnd mice, we identified a homozygous 1-bp insertion (267-268insC, codon 90) predicting a frameshift and a truncated protein. Our data demonstrate that mutations in these orthologous genes underlie NCL phenotypes in human and mouse, and represent the first description of the molecular basis of a naturally occurring animal model for NCL.


Biochimica et Biophysica Acta | 2001

Isolation and characterization of a cDNA encoding a novel member of the human regenerating protein family: Reg IV

J.C. Hartupee; Hao F. Zhang; Maria F. Bonaldo; Marcelo B. Soares; Brian K. Dieckgraefe

Human Reg and Reg-related genes constitute a multi-gene family belonging to the calcium (C-type) dependent lectin superfamily. Regenerating gene family members are expressed in the proximal gastrointestinal (GI) tract and ectopically at other sites in the setting of tissue injury. By high-throughput sequence analysis of a large inflammatory bowel disease library, two cDNAs have been isolated which encode a novel member of this multigene family. Based on primary sequence homology, tissue expression profiles, and shared exon-intron junction genomic organization, we assign this gene to the regenerating gene family. Specific protein structural differences suggest that the current three regenerating gene subtypes should be expanded to four. We demonstrate that Reg IV has a highly restricted tissue expression pattern, with prominent expression in the gastrointestinal tract. Reg IV mRNA expression is significantly up-regulated by mucosal injury from active Crohns disease or ulcerative colitis.


Nature Genetics | 1999

An encyclopedia of mouse genes

Marco A. Marra; LaDeana W. Hillier; Tamara A. Kucaba; Melissa Allen; Robert Barstead; Catherine Beck; Angela Blistain; Maria F. Bonaldo; Yvette Bowers; Louise Bowles; Marco Cardenas; Ann Chamberlain; Julie Chappell; Sandra W. Clifton; Anthony Favello; Steve Geisel; Marilyn Gibbons; Njata Harvey; Francesca S. Hill; Yolanda Jackson; Sophie Kohn; Greg Lennon; Elaine R. Mardis; John Martin; LeeAnne Mila; Rhonda McCann; Richard Morales; Deana Pape; Barry Person; Christa Prange

The laboratory mouse is the premier model system for studies of mammalian development due to the powerful classical genetic analysis possible (see also the Jackson Laboratory web site, http://www.jax.org/) and the ever–expanding collection of molecular tools. To enhance the utility of the mouse system, we initiated a program to generate a large database of expressed sequence tags (ESTs) that can provide rapid access to genes. Of particular significance was the possibility that cDNA libraries could be prepared from very early stages of development, a situation unrealized in human EST projects. We report here the development of a comprehensive database of ESTs for the mouse. The project, initiated in March 1996, has focused on 5´ end sequences from directionally cloned, oligo–dT primed cDNA libraries. As of 23 October 1998, 352,040 sequences had been generated, annotated and deposited in dbEST, where they comprised 93% of the total ESTs available for mouse. EST data are versatile and have been applied to gene identification, comparative sequence analysis, comparative gene mapping and candidate disease gene identification, genome sequence annotation, microarray development and the development of gene–based map resources.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis.

Andrew M. Wier; Spencer V. Nyholm; Mark J. Mandel; R. Prisca Massengo-Tiassé; Amy L. Schaefer; Irina Koroleva; Sandra Splinter-BonDurant; Bartley Brown; Liliana Manzella; Einat Snir; Hakeem Almabrazi; Todd E. Scheetz; Maria F. Bonaldo; Thomas L. Casavant; M. Bento Soares; John E. Cronan; Jennifer L. Reed; Edward G. Ruby; Margaret J. McFall-Ngai

Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host’s expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts’ membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid–vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.


Sarcoma | 2011

Identification of Differentially Expressed MicroRNAs in Osteosarcoma

Rishi Lulla; Fabricio F. Costa; Jared M. Bischof; Pauline M. Chou; Maria F. Bonaldo; Elio F. Vanin; Marcelo B. Soares

A limited number of reports have investigated the role of microRNAs in osteosarcoma. In this study, we performed miRNA expression profiling of osteosarcoma cell lines, tumor samples, and normal human osteoblasts. Twenty-two differentially expressed microRNAs were identified using high throughput real-time PCR analysis, and 4 (miR-135b, miR-150, miR-542-5p, and miR-652) were confirmed and validated in a different group of tumors. Both miR-135b and miR-150 have been previously shown to be important in cancer. We hypothesize that dysregulation of differentially expressed microRNAs may contribute to tumorigenesis. They might also represent molecular biomarkers or targets for drug development in osteosarcoma.


Current Biology | 2006

Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions

Adrian Reyes-Prieto; Jeremiah D. Hackett; Marcelo B. Soares; Maria F. Bonaldo; Debashish Bhattacharya

A single cyanobacterial primary endosymbiosis that occurred approximately 1.5 billion years ago is believed to have given rise to the plastid in the common ancestor of the Plantae or Archaeplastida--the eukaryotic supergroup comprising red, green (including land plants), and glaucophyte algae. Critical to plastid establishment was the transfer of endosymbiont genes to the host nucleus (i.e., endosymbiotic gene transfer [EGT]). It has been postulated that plastid-derived EGT played a significant role in plant nuclear-genome evolution, with 18% (or 4,500) of all nuclear genes in Arabidopsis thaliana having a cyanobacterial origin with about one-half of these recruited for nonplastid functions. Here, we determine whether the level of cyanobacterial gene recruitment proposed for Arabidopsis is of the same magnitude in the algal sisters of plants by analyzing expressed-sequence tag (EST) data from the glaucophyte alga Cyanophora paradoxa. Bioinformatic analysis of 3,576 Cyanophora nuclear genes shows that 10.8% of these with significant database hits are of cyanobacterial origin and one-ninth of these have nonplastid functions. Our data indicate that unlike plants, early-diverging algal groups appear to retain a smaller number of endosymbiont genes in their nucleus, with only a minor proportion of these recruited for nonplastid functions.


Mechanisms of Development | 2005

Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development

Edwina McGlinn; Kelly Lammerts van Bueren; Salvatore Fiorenza; Rong Mo; Alisa M. Poh; Alistair Raymond Russell Forrest; Marcelo B. Soares; Maria F. Bonaldo; Sean M. Grimmond; Chi-chung Hui; Brandon J. Wainwright; Carol Wicking

From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number and identity. The molecular cascades dependent on Gli3 at later stages of limb development, which link early patterning events with final digit morphogenesis, remain poorly characterised. By analysing the transcriptional consequences of loss of Gli3 in the anterior margin of the E11.5 and E12.5 limb bud in the polydactylous mouse mutant extra-toes (Gli3(Xt/Xt)), we have identified a number of known and novel transcripts dependent on Gli3 in the limb. In particular, we demonstrated that the genes encoding the paired box transcription factor Pax9, the Notch ligand Jagged1 and the cell surface receptor Cdo are dependent on Gli3 for correct expression in the anterior limb mesenchyme. Analysis of expression in compound Shh;Gli3 mutant mouse embryos and in both in vitro and in vivo Shh signaling assays, further defined the importance of Shh regulated processing of Gli3 in controlling gene expression. In particular Pax9 regulation by Shh and Gli3 was shown to be context dependent, with major differences between the limb and somite revealed by Shh bead implantation experiments in the chick. Jagged1 was shown to be induced by Shh in the chick limb and in a C3H10T1/2 cell based signaling assay, with Shh;Gli3 mutant analysis indicating that expression is dependent on Gli3 derepression. Our data have also revealed that perturbation of early patterning events within the Gli3(Xt/Xt) limb culminates in a specific delay of anterior chondrogenesis which is subsequently realised as extra digits.

Collaboration


Dive into the Maria F. Bonaldo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadanori Tomita

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Wang

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hehuang Xie

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge